Advertisement

Impact of Cerium Doping on Dielectric Properties of Palmierite [K2Pb(SO4)2]

  • Sarala Natarajan
  • Dhatchayani Surendran
  • Govindan Vadivel
  • Sankaranarayanan KrishnasamyEmail author
Article
  • 5 Downloads

Abstract

Cerium-doped K2Pb(SO4)2 was synthesized by a coprecipitation method. K2Pb(SO4)2 is a semitransparent colourless or white material that occurs as a rare fumarolic sublimate. Only the crystal structure of palmierite has been reported to date. The present work concentrates on its vibrational and physical properties, including optical, thermal, and dielectric studies. The crystalline nature and lattice distortion were confirmed by x-ray diffraction analysis. Fourier-transform infrared (FTIR) spectroscopy revealed the functional groups present in the material. Morphological and elemental composition analyses were carried out by scanning electron microscope/energy-dispersive spectroscopy (SEM/EDAX). Thermogravimetric–differential scanning calorimetry (TG-DSC) analysis was carried out for improved understanding of the thermal characteristics of undoped and Ce-doped K2Pb(SO4)2. The optical characteristics were analyzed by photoluminescence (PL) spectrophotometry. The presence of cerium ions was confirmed by the emission peak at 314 nm, which may be due to 5d–4f transitions of Ce3+ ions. The dielectric constant and loss were measured as functions of frequency. The results indicate that cerium doping has a significant influence on the dielectric properties of K2Pb(SO4)2.

Keywords

Ce-doped K2Pb(SO4)2 synthesis powder XRD analysis thermal studies dielectric behavior 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

Funding was provided by UGC-BSR Fellowship for Sciences (Grant No. F.25-1/2013-14(BSR)/7-14/2007 (BSR)/30.05.2014).

References

  1. 1.
    U. Kuhn and F. Lüty, Solid State Commun. 3, 31 (1965).CrossRefGoogle Scholar
  2. 2.
    N.H. Fletcher, A.D. Hilton, and B.W. Ricketts, J. Phys. D Appl. Phys. 29, 253 (1996).CrossRefGoogle Scholar
  3. 3.
    A. Mukherjee, P. Victor, J. Parui, and S.B. Krupanidhi, J. Appl. Phys. 101, 034106 (2007).CrossRefGoogle Scholar
  4. 4.
    X.X. Zhou, C.L. Chang, Q.N. Li, Q. Feng, C.R. Zhou, X. Liu, Y. Yang, and G.H. Chen, J. Mater. Sci. Mater. Electron. 27, 3948 (2016).CrossRefGoogle Scholar
  5. 5.
    S.H. Liu, S.X. Xue, W.Q. Zhang, and J.W. Zhai, Ceram. Int. 40, 15633 (2014).CrossRefGoogle Scholar
  6. 6.
    H.Y. Zheng, Y.P. Pu, X.Y. Liu, and J. Wan, J. Alloys Compd. 674, 272 (2016).CrossRefGoogle Scholar
  7. 7.
    G. Triani, G.A.D. Hilton, and B.W. Ricketts, J. Mater. Sci. Mater. Electron. 12, 17 (2001).CrossRefGoogle Scholar
  8. 8.
    J.I. Yang, R.G. Polcawich, L.M. Sanchez, and S. Trolier-McKinstry, J. Appl. Phys. 117, 014103 (2015).CrossRefGoogle Scholar
  9. 9.
    J.M. Longo and L.R. Clavenna, Catal. Chem. Solid State Inorg. 272, 45 (1976).Google Scholar
  10. 10.
    H. Von Saalfeld, Neues Jahrb. Minl. Monatsh. 2, 75 (1973).Google Scholar
  11. 11.
    H. Von Schwarz, J. Inorg. Gen. Chem. 344, 41 (1966).Google Scholar
  12. 12.
    H.H. Landolt and R. Börnstein, Numerical Data and Functional Relationships in Science and Technology, New Series, Vol. 43 (Berlin: Springer, 2007).Google Scholar
  13. 13.
    C. Wang, Y. Ao, P. Wang, J. Hou, J. Qian, and S. Shang, J. Hazard. Mater. 178, 517 (2010).CrossRefGoogle Scholar
  14. 14.
    G. Xiao, X. Huang, X. Liao, and B. Shi, J. Phys. Chem. C 117, 9739 (2013).CrossRefGoogle Scholar
  15. 15.
    R.G. Tissot, M.A. Rodriguez, D.L. Sipola, and J.A. Voigt, Powder Diffr. 16, 92 (2001).CrossRefGoogle Scholar
  16. 16.
  17. 17.
    G. Herzberg, IR and Raman Spectra of Poly-atomic Molecules, 2nd ed. (New York: Van Nostrand, 1960).Google Scholar
  18. 18.
    R. Zamiri, H.A. Ahangar, A. Kaushal, A. Zakaria, G. Zamiri, D. Tobaldi, and J.M.F. Ferreira, PLoS ONE 10, e0122989 (2015).CrossRefGoogle Scholar
  19. 19.
    T.N. Ravishankar, T. Ramakrishnappa, G. Nagaraju, and H. Rajanaika, Chem. Open 4, 146 (2015).Google Scholar
  20. 20.
    M.D. Lane, Am. Miner. 92, 1 (2007).CrossRefGoogle Scholar
  21. 21.
    K. Sowri Babu, A.R.C. Reddy, C. Sujatha, and K.V.G. Reddy, AIP Conf. Proc. 1583, 235 (2014).CrossRefGoogle Scholar
  22. 22.
    A.K. Das, A.K. Buzarbaruah, and S. Bardaloi, J. Mod. Phys. 4, 1022 (2013).CrossRefGoogle Scholar
  23. 23.
    G.N. Nikhare, S.C. Gedam, and S.J. Dhoble, Luminescence 30, 163 (2014).CrossRefGoogle Scholar
  24. 24.
    V. Petkova and Y. Pelovski, J. Therm. Anal. Calorim. 93, 847 (2008).CrossRefGoogle Scholar
  25. 25.
    K.W. Wagner, Am. J. Phys. 40, 317 (1973).Google Scholar
  26. 26.
    C.G. Koops, Phys. Rev. 83, 121 (1951).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  • Sarala Natarajan
    • 1
  • Dhatchayani Surendran
    • 1
  • Govindan Vadivel
    • 1
  • Sankaranarayanan Krishnasamy
    • 1
    Email author
  1. 1.Department of PhysicsAlagappa UniversityKaraikudiIndia

Personalised recommendations