Advertisement

Polydimethylsiloxane-Multiwalled Carbon Nanotube Nanocomposites as Dielectric Materials: Frequency, Concentration, and Temperature-Dependence Studies

  • Subhadra Panda
  • Sudipta Goswami
  • Bibhudendra AcharyaEmail author
Article
  • 3 Downloads

Abstract

Polydimethylsiloxane/multiwalled carbon nanotube (PDMS/MWCNT) nanocomposites with different amounts of MWCNT nano-filler (1 wt.%, 2 wt.%, 4 wt.%, 5 wt.%, 6 wt.%) were prepared by mechanical mixing using a Brabender and two roll mixer. The surface and bulk properties, and dispersion of the nanofillers in the nanocomposite matrix were studied using scanning and transmission electron microscopy (SEM and TEM); the average diameter of the MWCNTs in the PDMS matrix was ∼ 25 nm. Variable-temperature complex impedance analysis (CIA) showed that the impedance decreased with the frequency, MWCNT concentration, and temperature from 108 Ω to 105 Ω, demonstrating the possibility of increasing the electrical conductivity of the nanocomposites. The dielectric permittivity (\(\varepsilon^{{\prime }}\)) decreased with frequency from 800 to 52 (6% MWCNT), and increased from 52 to 430 (at 1 Hz) with MWCNT doping and from 430 to 1870 (at 1 Hz) with temperature, attributed to interaction of the nanofillers inside the PDMS matrix and the positive temperature coefficient (PTC) effect. Electrical conductivity was observed in both the direct current (DC) and alternating current (AC) region, and increased from 10−4 S cm−1 to 10−2 S cm−1 with frequency (6% MWCNT) and from 10−7 S cm−1 to 10−4 S cm−1 with the MWCNT concentration due to the hopping or tunneling mechanism. The PTC increased with temperature given the conductive nature of the filler and positive temperature coefficient effect. Percolation studies of the dielectric permittivity and electrical conductivity as a function of frequency at different temperatures (30°C, 50°C, 70°C, 100°C) showed that the threshold limit of the MWCNTs in the PDMS matrix was 4%.

Keywords

Polydimethylsiloxane nanocomposites dielectric frequency concentration temperature 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

The authors are thankful to the Director, National Institute of Technology Raipur, India, for providing financial support from TEQIP and facilities.

Conflict of interest

The authors declare no conflict of interest.

References

  1. 1.
    C.X. Liu and J.W. Choy, Nanomaterial 2, 329 (2012).CrossRefGoogle Scholar
  2. 2.
    Z.M. Dang, J.K. Yuan, S.H. Yao, and R.J. Liao, Adv. Mater. 25, 6334 (2013).CrossRefGoogle Scholar
  3. 3.
    A. Manthiram, S.-H. Chung, and C. Zu, Adv. Mater. 27, 1980 (2015).CrossRefGoogle Scholar
  4. 4.
    B.J. Landi, R.P. Raffaelle, Y.S.L. Castro, and S.G. Bailey, Prog. Photovolt. Res. Appl. 13, 165 (2005).CrossRefGoogle Scholar
  5. 5.
    P. Barber, S. Balasubramanian, Y. Anguchamy, and S. Gong, Materials 2, 1697 (2009).CrossRefGoogle Scholar
  6. 6.
    J. Ihlefeld, B. Laughlin, A. Hunt-Lowery, and W. Borland, J. Electroceramics 14, 95 (2005).CrossRefGoogle Scholar
  7. 7.
    M. Shakir, B.K. Singh, R.K. Gaur, B. Kumar, G. Bhagavannarayana, and M.A. Wahab, Chalcogenide Lett. 6, 655 (2009).Google Scholar
  8. 8.
    M. Shakir, S.K. Kushawaha, K.K. Maurya, S. Kumar, M.A. Wahab, and G. Bhagavannarayana, J. Appl. Cryst. 43, 491 (2010).CrossRefGoogle Scholar
  9. 9.
    E. Manias, Nat. Mater. 6, 9 (2007).CrossRefGoogle Scholar
  10. 10.
    J.C. McDonald and G.M. Whitesides, Acc. Chem. Res. 35, 491 (2002).CrossRefGoogle Scholar
  11. 11.
    M. Amjadi, A. Pichitpajongkit, S. Lee, S. Ryu, and I. Park, ACS Nano 8, 5154 (2014).CrossRefGoogle Scholar
  12. 12.
    L. Cai, L. Song, P. Luan, Q. Zhang, N. Zhang, and Q. Gao, Sci. Rep. 3, 3048 (2013).CrossRefGoogle Scholar
  13. 13.
    M. Amjadi, K.U. Kyung, and I. Park, Adv. Funct. Mater. 26, 1678 (2016).CrossRefGoogle Scholar
  14. 14.
    D. Ponnamma, K.K. Sadasivuni, and J.J. Cabibihan, Appl. Phys. Lett. 108, 171906 (2016).CrossRefGoogle Scholar
  15. 15.
    S. Cheng, Z. Wu, P. Hallbjorner, K. Hjort, and A. Rydberg, IEEE Trans. Antennas Propag. 57, 3765 (2009).CrossRefGoogle Scholar
  16. 16.
    S. Cheng, A. Rydberg, K. Hjort, and Z. Wu, Appl. Phys. Lett. 94, 144103 (2009).Google Scholar
  17. 17.
    M. Kubo, X. Li, C. Kim, M. Hashimoto, B.J. Wiley, D. Ham, and G.M. Whitesides, Adv. Mater. 22, 2749 (2010).CrossRefGoogle Scholar
  18. 18.
    J.C. Lotters, W. Olthuis, P.H. Veltink, and P. Bergveld, J. Micromech. Microeng. 7, 145 (1997).CrossRefGoogle Scholar
  19. 19.
    S. Kumar, M. Sarita, M. Nehra, N. Dilbaghi, K. Tankeshwar, and K.H. Kim, Prog. Polym. Sci. 80, 1 (2018).CrossRefGoogle Scholar
  20. 20.
    R. B. V. B. Simorangkir, Y. Yang, R. M. Hashmi, T. Björninen, K. P. Esselle, and L. Ukkonen, IEEE Access. (2018).  https://doi.org/10.1109/access.2018.2867696.
  21. 21.
    J. Saji, A. Khare, R.N.P. Choudhary, and S.P. Mahapatra, J. Polym. Res. 21, 341 (2014).CrossRefGoogle Scholar
  22. 22.
    H.D. Tran, D. Li, and R.B. Kaner, Adv. Mater. 21, 1487 (2009).CrossRefGoogle Scholar
  23. 23.
    M. Wahlander, F. Nilsson, R.L. Andersson, C.C. Sanchez, N. Taylor, A. Carlmark, H. Hillborgand, and E. Malmstrom, J. Mater. Chem. A 5, 14241 (2017).CrossRefGoogle Scholar
  24. 24.
    R.C. Smith, C. Liang, M. Landry, J.K. Nelson, and L.S. Schadler, IEEE Trans. Dielectr. Electr. Insul. 15, 187 (2008).CrossRefGoogle Scholar
  25. 25.
    N. Sankar, M.N. Reddy, and R.K. Prasad, Bull. Mater. Sci. 39, 47 (2016).CrossRefGoogle Scholar
  26. 26.
    P. Puri, R. Mehta, and S. Rattan, J. Electron. Mater. 44, 4255 (2015).CrossRefGoogle Scholar
  27. 27.
    S.K. Tiwari, R.N.P. Choudhary, and S.P. Mahapatra, J. Polym. Res. 20, 176 (2013).CrossRefGoogle Scholar
  28. 28.
    D. Wilkinson, J.S. Langer, and P.N. Sen, Phys. Rev. B 28, 1081 (1983).CrossRefGoogle Scholar
  29. 29.
    K.E. Wise, C. Park, E.J. Siochi, and J.S. Harrison, Chem. Phys. Lett. 391, 207 (2004).CrossRefGoogle Scholar
  30. 30.
    P. Ghosh and A. Chakrabarti, Euro. Polym. J. 36, 1043 (2000).CrossRefGoogle Scholar
  31. 31.
    S. Kirkpatrick, Rev. Mod. Phys. 45, 574 (1973).CrossRefGoogle Scholar
  32. 32.
    S.H. Jasem and W.A. Hussain, J. Basrah Res. (Sciences) 38, 60 (2012).Google Scholar
  33. 33.
    Z. Wang, W. Zhou, X. Sui, L. Dong, H. Cai, J. Zuo, and Q. Chen, J. Electron. Mater. 45, 3069 (2016).CrossRefGoogle Scholar
  34. 34.
    M.H. Al-Saleh and S.A. Jawad, J. Electron. Mater. 45, 3532 (2016).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  • Subhadra Panda
    • 1
  • Sudipta Goswami
    • 2
  • Bibhudendra Acharya
    • 1
    Email author
  1. 1.Department of Electronics and TelecommunicationNational Institute of Technology RaipurRaipurIndia
  2. 2.Department of Chemical EngineeringBirla Institute of Technology MesraRanchiIndia

Personalised recommendations