Advertisement

Microfabrication of Low Cost Frequency Selective Surface for Terahertz Wave by Laser Ablation

  • Manikandan EsakkimuthuEmail author
  • Sreeja Balakrishnapillai Suseela
  • Radha Sankarrajan
  • Abhishek Gupta
  • Shriganesh Prabhu
Article

Abstract

A method of fabricating and characterizing terahertz frequency selective surface filters from a low-cost silver adhesive tape has been reported in this paper. The proposed filter was initially evaluated numerically using the method of moment’s simulation and verified experimentally by terahertz time-domain spectroscopy technique. The numerical results show that the cross aperture frequency selective surface has angle-resolved and polarization independent operation. The proposed silver adhesive tape and conventional copper-based frequency selective surface have been fabricated using a laser micromachining process. A 20 ns-pulsed laser operating at 1064 nm wavelength was used to create the desired structure by ablation mechanism in the copper film. The pattern ablated by the laser is a cross-shaped slit on copper and silver adhesive tape. The patterned structure was designed to resonate at 0.25 THz by the cross-arm structure. The fabricated structure shows the peak transmittance of 90% with a full-width half maximum of 48% with respect to the resonance. The adhesive tape based frequency selective surface provides similar transmission characteristics compared to a conventional frequency selective surface.

Keywords

Micromachining laser ablation terahertz frequency selective surface sensing 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

References

  1. 1.
    M. Tonouchi, Nat. Photonics 1, 97 (2007).CrossRefGoogle Scholar
  2. 2.
    J. Li, Y. Li, and L. Zhang, IEEE Photonics Technol. Lett. 30, 238 (2017).CrossRefGoogle Scholar
  3. 3.
    D.W. Porterfield, J.L. Hesler, R. Densing, E.R. Mueller, T.W. Crowe, and R.M. Weikle, Appl. Opt. 33, 6046 (1994).CrossRefGoogle Scholar
  4. 4.
    P.A.R. Ade, G. Pisano, C. Tucker, and S. Weaver, Proc. SPIE. 6275, 62750U (2006).CrossRefGoogle Scholar
  5. 5.
    M.J. Madou, Fundamentals of Microfabrication and Nanotechnology, 3rd ed. (Boca Raton: CRC Press, 2011).CrossRefGoogle Scholar
  6. 6.
    M. Esakkimuthu, S.B. Suseela, R. Sankararajan, A. Gupta, G. Rana, and S. Prabhu, J. Laser Micro Nanoeng. 12, 313 (2017).Google Scholar
  7. 7.
    N. Ahmed, S. Darwish, and A.M. Alahmari, Mater. Manuf. Process. 31, 1121 (2016).CrossRefGoogle Scholar
  8. 8.
    S. Mishra and V. Yadava, Opt. Lasers Eng. 73, 89 (2015).CrossRefGoogle Scholar
  9. 9.
    J. Bonse, S. Hohm, S.V. Kirner, A. Rosenfeld, and J. Kruger, IEEE J. Sel. Top. Quantum Electron. 23, 1 (2017).CrossRefGoogle Scholar
  10. 10.
    K.G. Nichols, Proc. IEE 116, 2093 (1969).Google Scholar
  11. 11.
    R. Jordan, D. Cole, G. Lunney, K. Mackay, and D. Givord, Appl. Surf. Sci. 86, 24 (1995).CrossRefGoogle Scholar
  12. 12.
    A. Bogaerts, Z. Chen, and D. Bleiner, J. Anal. At. Spectrom. 21, 384 (2006).CrossRefGoogle Scholar
  13. 13.
    C.R. Phipps, T.P. Turner, R.F. Harrison, G.W. York, W.Z. Osborne, G.K. Anderson, X.F. Corlis, L.C. Haynes, H.S. Steele, K.C. Spicochi, and T.R. King, J. Appl. Phys. 64, 1083 (1988).CrossRefGoogle Scholar
  14. 14.
    T.J. Hirsch, R.F. Miracky, and C. Lin, Appl. Phys. Lett. 57, 1357 (1990).CrossRefGoogle Scholar
  15. 15.
    A. Bogaerts, Z. Chen, R. Gijbels, and A. Vertes, Spectrochim. Acta Part B At. Spectrosc. 58, 1867 (2003).CrossRefGoogle Scholar
  16. 16.
    M. Aghaei, S. Mehrabian, and S.H. Tavassoli, J. Appl. Phys. 104, 053303 (2008).CrossRefGoogle Scholar
  17. 17.
    K. Tada, G. Cohoon, K. Kieu, M. Mansuripur, and R.A. Norwood, IEEE Photonic Technol. Lett. 85712, 430 (2012).Google Scholar
  18. 18.
    N. Farid, P. Dasgupta, H. Chan, D. Milne, and G.M. O’Connor, Opt. InfoBase Conf. Pap. Part F82-C, 6736 (2017).Google Scholar
  19. 19.
    C. Mcdonnell, D. Milne, H. Chan, D. Rostohar, and G.M.O. Connor, Opt. Lasers Eng. 80, 73 (2016).CrossRefGoogle Scholar
  20. 20.
    E. Manikandan, B.S. Sreeja, S. Radha, and R.N. Bathe, Mater. Lett. 229, 320 (2018).CrossRefGoogle Scholar
  21. 21.
    N. Born, R. Gente, and M. Koch, Electron. Lett. 51, 1012 (2015).CrossRefGoogle Scholar
  22. 22.
    E. Manikandan, B.S. Sreeja, S. Radha, R.N. Bathe, and R. Jain, J. Infrared Millime. Terahertz Waves 40, 38 (2018).CrossRefGoogle Scholar
  23. 23.
    E. Manikandan, B.S. Sreeja, S. Radha, M. Duraiselvam, A. Gupta, and S. Prabhu, Opt. Eng. 58, 011007 (2018).Google Scholar
  24. 24.
    A. Ferraro, D.C. Zografopoulos, R. Caputo, and R. Beccherelli, IEEE J. Sel. Top. Quantum Electron. 23, 8501308 (2017).CrossRefGoogle Scholar
  25. 25.
    P.D. Cunningham, N.N. Valdes, F.A. Vallejo, L.M. Hayden, B. Polishak, X. Zhou, J. Luo, A.K. Jen, J.C. Williams, and R.J. Twieg, J. Appl. Phys. 109, 043505 (2011).CrossRefGoogle Scholar
  26. 26.
    Z. Song, Z. Zhao, H. Zhao, W. Peng, X. He, and W. Shi, J. Appl. Phys. 118, 043108 (2015).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.Department of Electronics and Communication EngineeringSSN College of EngineeringChennaiIndia
  2. 2.Department of Condensed Matter Physics and Material ScienceTata Institute of Fundamental ResearchMumbaiIndia

Personalised recommendations