Advertisement

Large Piezoelectric Stability and Low Polarization Fatigue in 6Pb(Sc1/2Nb1/2)O3-70Pb(Mg1/3Nb2/3)O3-24PbTiO3 Crystals

  • Xiaojuan LiEmail author
  • Qi Jing
  • Zengzhe Xi
  • Wei Long
  • Pinyang Fang
Article
  • 1 Downloads

Abstract

The electrical properties and polarization fatigue of [001]-oriented 6Pb(Sc1/2Nb1/2)O3-70Pb(Mg1/3Nb2/3)O3-24PbTiO3 (6PSN-70PMN-24PT) crystals were investigated. Compared with binary Pb(Mg1/3Nb2/3)O3-PbTiO3 (PMN-PT) crystals, the ternary 6PSN-70PMN-24PT crystal showed a higher rhombohedral → tetragonal transition temperature (TR-T = 120°C) and a larger coercive field (Ec = 4 kV/cm). It was found that the piezoelectric constant (d33 ≈ 1200 pC/N) and electromechanical coupling coefficient (kt ≈ 61%) were weakly dependent on the thermal annealing temperature (Ta), maintaining over 90% of the original value at Ta < 120°C, indicating excellent piezoelectric thermal stability. Electric fatigue measurements showed that the ternary 6PSN-70PMN-24PT crystal exhibited slight fatigue characteristics below 105 bipolar cycles, while the binary PMN-PT crystal exhibited sudden polarization degradation when the cycle numbers were above 102 cycles. The improved fatigue stability for 6PSN-70PMN-24PT crystals was attributed to the large coercive field. The physical mechanisms of the enhanced coercive field and high transition temperature were discussed based on repulsive energy and polar domains.

Keywords

Ferroelectric crystal 6PSN-70PMN-24PT piezoelectric stability fatigue 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

References

  1. 1.
    Y.F. Chang, B. Watson, M. Fanton, R.J. Meyer Jr, and G.L. Messing, Appl. Phys. Lett. 111, 232901 (2017).CrossRefGoogle Scholar
  2. 2.
    F. Li, D.B. Lin, Z.B. Chen, Z.X. Cheng, J.L. Wang, C.C. Li, Z. Xu, Q.W. Huang, X.Z. Liao, L.Q. Chen, T.R. Shrout, and S.J. Zhang, Nat. Mater. 17, 349 (2018).CrossRefGoogle Scholar
  3. 3.
    S.E. Park and T.R. Shrout, J. Appl. Phys. 82, 1804 (1997).CrossRefGoogle Scholar
  4. 4.
    F. Li, S.J. Zhang, Z. Xu, X. Wei, J. Luo, and T.R. Shrout, J. Appl. Phys. 108, 034106 (2010).CrossRefGoogle Scholar
  5. 5.
    J. Peräntie, J. Hagberg, A. Uusimäki, and H. Jantunen, Phys. Rev. B 82, 134119 (2010).CrossRefGoogle Scholar
  6. 6.
    Y.H. Bing and Z.G. Ye, J. Cryst. Growth 287, 326 (2006).CrossRefGoogle Scholar
  7. 7.
    A.T. Kozakov, O.E. Polozhentsev, I.P. Raevski, N. Kumar, S.I. Raevskaya, and A.V. Nikolskii, Surf. Sci. 666, 1 (2017).CrossRefGoogle Scholar
  8. 8.
    V. Sivasubramanian, V. Subramanian, and S. Kojima, Phys. Rev. B 93, 054115 (2016).CrossRefGoogle Scholar
  9. 9.
    V.R. Shanmugam, N.A. Srungarpu, and J.P. Sadequa, J. Mater. Res. 29, 1054 (2014).CrossRefGoogle Scholar
  10. 10.
    Z.J. Wang, X.Z. Li, C. He, Y. Liu, S.J. Han, S.L. Pan, and X.F. Long, J. Mater. Sci. 50, 3970 (2015).CrossRefGoogle Scholar
  11. 11.
    Y. Yamashita and K. Harada, Jpn. J. Appl. Phys. 36, 6039 (1997).CrossRefGoogle Scholar
  12. 12.
    Z.J. Wang, C. He, H.M. Qiao, D.F. Pang, X.M. Yang, S.G. Zhao, X.Z. Li, Y. Liu, and X.F. Long, Cryst. Growth Des. 18, 145 (2018).CrossRefGoogle Scholar
  13. 13.
    Z.J. Wang, C. He, X.Z. Li, Y. Liu, X.F. Long, S.J. Han, and S.L. Pan, Mater. Lett. 184, 162 (2016).CrossRefGoogle Scholar
  14. 14.
    K. Yanagisawa, J.C. Rendon-Angeles, H. Kanai, and Y. Yamashita, J. Mater. Sci. Lett. 17, 2105 (1998).CrossRefGoogle Scholar
  15. 15.
    Y.P. Guo, H.Q. Xu, H.S. Luo, G.S. Xu, and Z.W. Yin, J. Cryst. Growth 226, 111 (2001).CrossRefGoogle Scholar
  16. 16.
    C.J. He, H.B. Chen, F. Bai, Z.B. Fan, L. Sun, F. Xu, J.M. Wang, Y.W. Liu, and K.J. Zhu, J. Appl. Phys. 112, 126102 (2012).CrossRefGoogle Scholar
  17. 17.
    F.L. Goupil, A. Berenov, A.K. Axelsson, M. Valant, and N.M. Alford, J. Appl. Phys. 111, 124109 (2012).CrossRefGoogle Scholar
  18. 18.
    Z.Y. Feng, X.Y. Zhao, and H.S. Luo, J. Phys. Condens. Matter 16, 6771 (2004).CrossRefGoogle Scholar
  19. 19.
    X.H. Zhao, W.G. Qu, H. He, N. Vittayakorn, and X.L. Tan, J. Am. Ceram. Soc. 89, 202 (2006).CrossRefGoogle Scholar
  20. 20.
    G.S. Xu, H.S. Luo, P.C. Wang, Z.Y. Qi, and Z.W. Yin, Chin. Sci. Bull. 45, 1380 (2000).CrossRefGoogle Scholar
  21. 21.
    L. Farber and P. Davies, J. Am. Ceram. Soc. 86, 1861 (2003).CrossRefGoogle Scholar
  22. 22.
    N.N. Luo, S.J. Zhang, Q. Li, Q.F. Yan, Y.L. Zhang, T. Ansella, J. Luo, and T.R. Shrout, J. Mater. Chem. C 4, 4568 (2016).CrossRefGoogle Scholar
  23. 23.
    W.H. He, Q. Li, X.Q. Xi, and Q.F. Yan, J. Am. Ceram. Soc. 101, 1236 (2018).CrossRefGoogle Scholar
  24. 24.
    R. Zhang, B. Jiang, W.H. Jiang, and W.W. Cao, Mater. Lett. 57, 1305 (2003).CrossRefGoogle Scholar
  25. 25.
    G.S. Xu, H.S. Luo, P.C. Wang, and Z.W. Yin, Chin. Sci. Bull. 45, 700 (2000).Google Scholar
  26. 26.
    H.B. Zhang, X.Y. Lu, R.X. Wang, C. Wang, L.M. Zheng, Z. Liu, C. Yang, R. Zhang, B. Yang, and W. Cao, Phys. Rev. B 96, 054109 (2017).CrossRefGoogle Scholar
  27. 27.
    Y.L. Wang, E.W. Sun, W. Song, W.C. Li, R. Zhang, and W.W. Cao, J. Alloys Compd. 601, 154 (2014).CrossRefGoogle Scholar
  28. 28.
    L.M. Zheng, R. Sahul, S.J. Zhang, W.H. Jiang, S.Y. Li, and W.W. Cao, J. Appl. Phys. 114, 104105 (2013).CrossRefGoogle Scholar
  29. 29.
    L.H. Liu, X. Wu, S. Wang, W. Di, D. Lin, X.Y. Zhao, and H. Luo, J. Cryst. Growth 318, 856 (2011).CrossRefGoogle Scholar
  30. 30.
    S.J. Zhang, J. Luo, F. Li, R.J. Meyer Jr, W. Hackenberger, and T.R. Shrout, Acta Mater. 58, 3773 (2010).CrossRefGoogle Scholar
  31. 31.
    I. Grinberga, M.R. Suchomel, P.K. Davies, and A.M. Rappe, J. Appl. Phys. 98, 094111 (2005).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.Shaanxi Key Laboratory of Photoelectric Functional Materials and Devices, School of Materials and Chemical EngineeringXi’an Technological UniversityXi’anChina

Personalised recommendations