Advertisement

Study of Mg2Si Thin Film and Ultra-Thin Film Formation for Thermoelectric Applications

  • Belkacem ZouakEmail author
  • Rachid Zirmi
  • Mohammed Said Belkaid
  • Marcel Pasquinelli
Article
  • 4 Downloads

Abstract

Mg2Si thin and ultra-thin films are grown on silicon (Si) substrates by performing heat treatments of Magnesium (Mg) layers deposited on Si (100), using radio frequency (RF)-sputtering and molecular beam epitaxy (MBE) techniques. In order to investigate the effect of annealing parameters on the formation of Mg2Si thin films, we conducted heat treatments under vacuum for some samples and in an argon gas atmosphere for others. X-ray diffraction (XRD) analysis of the thin films annealed in both environments confirms the formation of polycrystalline Mg2Si. This characterization also reveals that the formation of this compound depends on duration and pressure for the vacuum annealing and on temperature for the argon gas atmosphere annealing. Here, we report that the vacuum annealing is a good choice for Mg2Si thin film formation because the low temperature of the process is condusive to silicon technology. Some optimum parameters for obtaining Mg2Si thin films are proposed in this paper. Auger electron spectroscopy (AES) characterization technique confirms the formation of Mg2Si ultra-thin films at an annealing temperature of 200°C and under an ultra-high vacuum (UHV). In addition, scanning tunneling microscopy (STM) characterization indicates a nanosized grain formation of this compound with average size of approximately 20–40 nm.

Keywords

Thin films ultra-thin films magnesium silicide (Mg2Si) thermoelectricity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

We gratefully acknowledge the financial support of the CMEP—PHC—Tassili Project “16 MDU 970” (“Comité Mixte d’Evaluation et de Prospective Algéro-Français CMEP”). We are also grateful, for the help of Dr. M.TOUAT, Head of the Automatic department of the Electrical and Computer Engineering Faculty.

References

  1. 1.
    M. Nanko, H. Abe, M. Takeda, T. Homma, A. Kondo, and M. Naito, IOP Conference Series: Materials Science and Engineering, Vol. 21 (Bristol: IOP Publishing, 2011), p. 012006.Google Scholar
  2. 2.
    A. Masayasu, T. Iida, T. Nemoto, J. Soga, J. Sato, K. Makino, M. Fukano, and Y. Takanashi, J. Cyst. Growth. 304, 1 (2007).Google Scholar
  3. 3.
    R. Hans, S.C. Kaushik, and S. Manikandan, Appl. Sol. Energy 52, 205 (2016).CrossRefGoogle Scholar
  4. 4.
    R. Saravanan and M.C. Robert, J. Alloys Compd. 479, 26 (2009).CrossRefGoogle Scholar
  5. 5.
    K. Kaur and R. Kumar, Chin. Phys. B 25, 056401 (2016).CrossRefGoogle Scholar
  6. 6.
    M. Yoshinaga, T. Iida, M. Noda, T. Endo, and Y. Takanashi, Thin Solid Films 461, 86 (2004).CrossRefGoogle Scholar
  7. 7.
    G. Abdurakhmanov, R.A. Zakhidov, and S.A. Mamatkulova, Appl. Sol. Energy 48, 10 (2012).CrossRefGoogle Scholar
  8. 8.
    J.I. Tani and H. Kido, J. Ceram. Soc. Jpn. 123, 298 (2015).CrossRefGoogle Scholar
  9. 9.
    R. Kumar, S. Muthiah, A.K. Singh, and A. Dhar, Adv. Mater. Lett. 7, 8 (2016).Google Scholar
  10. 10.
    E. Savary, F. Gascoin, S. Marinel, and R. Heuguet, Powder Technol. 228, 295 (2012).CrossRefGoogle Scholar
  11. 11.
    H.J. Lee, Y.R. Cho, and I.H. Kim, J. Ceram. Process. Res. 12, 16 (2011).Google Scholar
  12. 12.
    M.T. Hosseinnejad, M. Ghoranneviss, G.R. Etaati, and F. Shahgoli, Vacuum 94, 57 (2013).CrossRefGoogle Scholar
  13. 13.
    T.E.M. Staab, Phys. Status Solidi B 246, 1587 (2009).CrossRefGoogle Scholar
  14. 14.
    Y. Wang, X.N. Wang, Z.X. Mei, X.L. Du, J. Zou, J.F. Jida, Q.K. Xue, X.N. Zhang, and Z. Zhang, J. Appl. Phys. 102, 126102 (2007).CrossRefGoogle Scholar
  15. 15.
    L. Chuang, N. Savvides, T.T. Tan, and S. Li, J. Electron. Mater. 39, 1777 (2010).CrossRefGoogle Scholar
  16. 16.
    J. Hu, Y. Sato, T. Hosono, and H. Tatsuoka, Vacuum 83, 1494 (2009).CrossRefGoogle Scholar
  17. 17.
    M.J. Yang, L.M. Zhang, L.Q. Han, Q. Shen, and C.B. Wang, Indian J. Eng. Mater. Sci. 16, 277 (2009).Google Scholar
  18. 18.
    C. Angelov, V. Mikli, B. Amov, and E. Goranova, J. Optoelectron. Adv. Mater. 7, 465 (2005).Google Scholar
  19. 19.
    N.G. Galkin, S.V. Vavanova, A.M. Maslov, K.N. Galkin, A.V. Gerasimenko, and T.A. Kaidalova, Thin Solid Films 515, 8230 (2007).CrossRefGoogle Scholar
  20. 20.
    J.H. Bahk, Z. Bian, and A. Shakouri, Phys. Rev. B 89, 075204 (2014).CrossRefGoogle Scholar
  21. 21.
    S. Bose, H.N. Acharya, and H.D. Banerjee, J. Mater. Sci. 28, 5461 (1993).CrossRefGoogle Scholar
  22. 22.
    T. Serikawa, K. Kawabata, and K. Kondoh, Trans. JWRI 36, 39 (2007).Google Scholar
  23. 23.
    N. Takagi, Y. Sato, T. Matsuyama, H. Tatsuoka, M. Tanaka, C. Fengmin, and H. Kuwabara, Appl. Surf. Sci. 244, 330 (2005).CrossRefGoogle Scholar
  24. 24.
    K.N. Galkin and N.G. Galkin, Phys. Proc. 11, 55 (2011).CrossRefGoogle Scholar
  25. 25.
    L. Chuang, D.Y. Wang, T.T. Tan, M.H.N. Assadi, and S. Li, Solid Films 520, 6226 (2012).CrossRefGoogle Scholar
  26. 26.
    L.M. Zhang, Y.G. Leng, H.Y. Jiang, L.D. Chen, and T. Hirai, Mater. Sci. Eng. B Adv. 86, 195 (2001).CrossRefGoogle Scholar
  27. 27.
    A. Vantomme, J.E. Mahan, G. Langouche, J.P. Becker, M. Van Bael, K. Temst, and C. Van Haesendonck, Appl. Phys. Lett. 70, 1086 (1997).CrossRefGoogle Scholar
  28. 28.
    Q.Q. Xiao, Q. Xie, K.J. Zhao, and Z.Q. Yu, Adv. Mat. Res. 290, 129 (2010).Google Scholar
  29. 29.
    D. Stathokostopoulos, D. Chaliampalias, E.C. Stefanaki, G. Polymeris, E. Pavlidou, K. Chrissafis, E. Hatzikraniotis, K.M. Paraskevopoulos, and G. Vourlias, Appl. Surf. Sci. 258, 417 (2013).CrossRefGoogle Scholar
  30. 30.
    T. Ikehata, T. Ando, T. Yamamoto, Y. Takagi, N. Sato, and H. Udono, Phys. Status Solidi C 10, 1702 (2013).CrossRefGoogle Scholar
  31. 31.
    W.K. Chu, S.S. Lau, J.W. Mayer, H. Müller, and K.N. Tu, Thin Solid Films 25, 393 (1975).CrossRefGoogle Scholar
  32. 32.
    X. Qingquan, X. Quan, C. Qian, Z. Kejie, Y. Zhiqiang, and S. Xiangqian, J. Semicond. 32, 082002 (2011).CrossRefGoogle Scholar
  33. 33.
    H. Tatsuokaa, N. Takagia, S. Okayaa, Y. Satoa, T. Inabaa, T. Ohishia, A. Yamamotoa, T. Matsuyamab, and H. Kuwabaraa, Thin Solid Films 461, 57 (2004).CrossRefGoogle Scholar
  34. 34.
    D. Stathokostopoulos, S.A. Tsipas, D. Chaliampalias, E. Pavlidou, E. Hatzikraniotis, K.M. Paraskevopoulos, and G. Vourlias, Superlattices Microstruct. 101, 76 (2017).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  • Belkacem Zouak
    • 1
    Email author
  • Rachid Zirmi
    • 1
  • Mohammed Said Belkaid
    • 1
  • Marcel Pasquinelli
    • 2
  1. 1.Laboratory of Advanced Technologies of Genie Electrics (LATAGE), Faculty of Electrical and Computer EngineeringMouloud Mammeri University (UMMTO)Tizi-OuzouAlgeria
  2. 2.Institut Matériaux Microélectronique Nanosciences de Provence IM2NP, CNRS, UMR 7334Aix-Marseille UniversityMarseille Cedex 20France

Personalised recommendations