Skip to main content
Log in

Enhanced Photoelectrochemical Performance of BiVO4 by a NiMoO4 Modification

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

In this work, porous BiVO4 thin films were deposited on the FTO glass through a spin-coating deposition method and their photoelectrochemical (PEC) properties were investigated. Further, the BiVO4 thin film was modified with a NiMoO4 thin layer for enhancing its PEC activity. It is demonstrated that the applied bias photo-to-current conversion efficiency is increased by 63% after a surface modification, which is ascribed to both the formation of a pn junction and the suppressed carrier recombination rate by terms of the electrochemical impedance spectroscopy. Finally, a schematic band model is also proposed to clarify the charge carrier transfer mechanism which is responsible for the enhanced PEC performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.J.A. Moniz, S.A. Shevlin, D.J. Martin, Z.X. Guo, and J. Tang, Energy Environ. Sci. 8, 731 (2015).

    Article  Google Scholar 

  2. C. Jiang, S.J.A. Moniz, A. Wang, T. Zhang, and J. Tang, Chem. Soc. Rev. 46, 4645 (2017).

    Article  Google Scholar 

  3. J. Li and N. Wu, Catal. Sci. Technol. 5, 1360 (2015).

    Article  Google Scholar 

  4. Y. Ma, X. Wang, Y. Jia, X. Chen, H. Han, and C. Li, Chem. Rev. 114, 9987 (2014).

    Article  Google Scholar 

  5. A. Fujishima and K. Honda, Nature 238, 37 (1972).

    Article  Google Scholar 

  6. J. Su, L. Guo, N. Bao, and C.A. Grimes, Nano Lett. 11, 1928 (2011).

    Article  Google Scholar 

  7. Y. Kuang, Q. Jia, H. Nishiyama, T. Yamada, A. Kudo, and K. Domen, Adv. Energy Mater. 6, 1501645 (2016).

    Article  Google Scholar 

  8. X. Yang, R. Liu, C. Du, P. Dai, Z. Zheng, and D. Wang, ACS Appl. Mater. Interfaces. 6, 12005 (2014).

    Article  Google Scholar 

  9. Q. Wu, P. Diao, J. Sun, D. Xu, T. Jin, and M. Xiang, J. Mater. Chem. A 3, 18991 (2015).

    Article  Google Scholar 

  10. L. Wang, M. Wei, X. Gu, Y. Zhao, and Y. Qiang, J. Electron. Mater. 47, 6540 (2018).

    Article  Google Scholar 

  11. Y. Park, K.J. McDonald, and K.-S. Choi, Chem. Soc. Rev. 42, 2321 (2013).

    Article  Google Scholar 

  12. S.J.A. Moniz, J. Zhu, and J. Tang, Adv. Energy Mater. 4, 1301590 (2014).

    Article  Google Scholar 

  13. J.H. Kim, Y. Jo, J.H. Kim, J.W. Jang, H.J. Kang, Y.H. Lee, D.S. Kim, Y. Jun, and J.S. Lee, ACS Nano 9, 11820 (2015).

    Article  Google Scholar 

  14. C. Ding, J. Shi, D. Wang, Z. Wang, N. Wang, G. Liu, F. Xiong, and C. Li, Phys. Chem. Chem. Phys. 15, 4589 (2013).

    Article  Google Scholar 

  15. L. Xia, J. Bai, J. Li, Q. Zeng, L. Li, and B. Zhou, Appl. Catal. B Environ. 204, 127 (2017).

    Article  Google Scholar 

  16. T.W. Kim and K.S. Choi, Science 343, 990 (2014).

    Article  Google Scholar 

  17. J.H. Kim, J.W. Jang, Y.H. Jo, F.F. Abdi, Y.H. Lee, R. van de Krol, and J.S. Lee, Nat. Commun. 7, 13380 (2016).

    Article  Google Scholar 

  18. F. Wu, Q. Liao, F. Cao, L. Li, and Y. Zhang, Nano Energy 34, 8 (2017).

    Article  Google Scholar 

  19. S. Peng, L. Li, H.B. Wu, S. Madhavi, and X.W. Lou, Adv. Energy Mater. 5, 1401172 (2015).

    Article  Google Scholar 

  20. F. Nti, D.A. Anang, and J.I. Han, J. Alloys Compd. 742, 342 (2018).

    Article  Google Scholar 

  21. L. Wang, X. Gu, Y. Zhao, M. Wei, Y. Qiang, and Y. Zhao, J. Mater. Sci.: Mater. Electron. 29, 19278 (2018).

    Google Scholar 

  22. H.L. Tan, X. Wen, R. Amal, and Y.H. Ng, J. Phys. Chem. Lett. 7, 1400 (2016).

    Article  Google Scholar 

  23. Z. Li, W. Luo, M. Zhang, J. Feng, and Z. Zou, Energy Environ. Sci. 6, 347 (2013).

    Article  Google Scholar 

  24. M. Rohloff, B. Anke, S. Zhang, U. Gernert, C. Scheu, M. Lerch, and A. Fischer, Sustain. Energy Fuels 1, 1830 (2017).

    Article  Google Scholar 

  25. X. Wang, J. Xie, and C.M. Li, J. Mater. Chem. A 3, 1235 (2015).

    Article  Google Scholar 

  26. X. Wan, F. Niu, J. Su, and L. Guo, Phys. Chem. Chem. Phys. 18, 31803 (2016).

    Article  Google Scholar 

  27. H.P. Maruska and A.K. Ghosh, Sol. Energy 20, 443 (1978).

    Article  Google Scholar 

  28. V. Umapathy, P. Neeraja, A. Manikandan, and P. Ramu, Trans. Nonferrous Metals Soc. China 27, 1785 (2017).

    Article  Google Scholar 

  29. L. Wang, X. Gu, Y. Zhao, M. Wei, C. Huang, and Y. Qiang, Appl. Surf. Sci. 448, 126 (2018).

    Article  Google Scholar 

Download references

Acknowledgments

This work is financially supported by Postgraduate Research and Practice Program of Education and Teaching Reform of CUMT (No. YJSJG-2018-042).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiuquan Gu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, L., Jia, S., Gu, X. et al. Enhanced Photoelectrochemical Performance of BiVO4 by a NiMoO4 Modification. J. Electron. Mater. 48, 2501–2508 (2019). https://doi.org/10.1007/s11664-019-07002-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-019-07002-2

Keywords

Navigation