Modeling and Simulation of a Thermoelectric Generator Using Bismuth Telluride for Waste Heat Recovery in Automotive Diesel Engines

  • A. Nour EddineEmail author
  • H. Sara
  • D. Chalet
  • X. Faure
  • L. Aixala
  • M. Cormerais
Topical Collection: International Conference on Thermoelectrics 2018
Part of the following topical collections:
  1. International Conference on Thermoelectrics 2018


Waste heat recovery, using thermoelectric power technology, is a promising approach to reduce fuel consumption and CO2 emissions on passenger cars. However, possible application requires optimizing heat exchangers and defining adequate thermoelectric materials to improve efficiency. A dynamic model has been developed to investigate the application of a thermoelectric generator (TEG) for waste heat recovery in an automotive engine exhaust. The converted electrical energy is used to charge a 12 V battery. The model evaluates the amount of recovered energy over a prescribed drive-cycle. It also evaluates the effect of system integration on the TEG performances, such as fuel consumption, temperatures downstream of the TEG and the relative counter pressure. Experiments are done on both a thermoelectric module (TEM) test rig and a diesel engine test rig equipped with a TEG prototype. Simulations of steady operating points show good agreement with experimental data. The results show a maximum power of 42 W generated by the TEG, with a maximum power of 1.5 W per module (corresponding to TEM hot side temperature of 671 K and TEM cold side temperature of 354 K). At the end of the duty cycle, the energy recovered by the vehicle battery is around 27 kJ (7.5 Wh). The engine counter pressure exceeds 30 mbar when the mass flow rate is higher than 36 g s−1. The simulation results of temperatures, pressures, and output power show that the model can be used as a basis to develop a TEG with high performance that ensure safety operation of the engine and the after treatment system.


Thermoelectric generator dynamic model waste heat recovery automotive application engine simulation 

List of Symbols


Coulombic efficiency


Generated current (A)


Thermal conductance of n-type and p-type (W m−2 K−1)


Mass flow rate (kg s−1)


Electrical power (W)


Battery power (W)


Thermal power (W)


Engine rotational speed (round min−1)


Electrical resistance (Ω)


Temperature (°C)


Voltage (V)


Factor of merit (1 K−1)


Figure of merit

Greek Symbols


Seebeck coefficient (V K−1)







Cold side


Hot side








Open circuit









Internal combustion engine


Operating points


Thermoelectric generator


Thermoelectric module


Waste heat recovery


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The work in this article is done in a joined research program between CEA Tech and Ecole Centrale de Nantes. The authors want to thank the “Region des Pays de la Loire” (in France) for their financial contribution to this study and Mann+Hummel for their technical contributions concerning engine tests and calibration.


  1. 1.
    European Environment Agency, (Eur. Environ. Agency 2018), Accessed 18 July 2018.
  2. 2.
    S.E. Aly, Heat Recover. Syst. CHP 7, 445 (1987).CrossRefGoogle Scholar
  3. 3.
    V. Pandiyarajan, M. Chinna Pandian, E. Malan, R. Velraj, and R.V. Seeniraj, Appl. Energy 88, 77 (2011).CrossRefGoogle Scholar
  4. 4.
    C. Européenne, C. Européenne, (Comm. Eur. communiqué de presse 2012), Accessed 18 July 2018.
  5. 5.
    Y. Ichiki, K. Shiraishi, T. Kanaboshi, Y. Ono, and Y. Ohta, Mitsubishi Heavy Ind. Tech. Rev. 48, 17 (2011).Google Scholar
  6. 6.
    A.M. Noor, R.C. Puteh, and S. Rajoo, J. Mod. Sci. Technol. 2, 108 (2014).Google Scholar
  7. 7.
    R. Shi, T. He, J. Peng, Y. Zhang, and W. Zhuge, Energy 102, 276 (2016).CrossRefGoogle Scholar
  8. 8.
    S. LeBlanc, Sustain. Mater. Technol. 1, 26 (2014).Google Scholar
  9. 9.
    X. Niu, J. Yu, and S. Wang, J. Power Sources 188, 621 (2009).CrossRefGoogle Scholar
  10. 10.
    M. Chen, L.A. Rosendahl, T.J. Condra, and J.K. Pedersen, IEEE Trans. Energy Convers. 24, 112 (2009).CrossRefGoogle Scholar
  11. 11.
    W. Li, M.C. Paul, A. Montecucco, A.R. Knox, J. Siviter, N. Sellami, X.L. Meng, E.F. Fernandez, T.K. Mallick, P. Mullen, A. Ashraf, A. Samarelli, L.F. Llin, D.J. Paul, D.H. Gregory, M. Gao, T. Sweet, F. Azough, R. Lowndes, and R. Freer, Energy Procedia 75, 633 (2015).CrossRefGoogle Scholar
  12. 12.
    Z.G. Shen, S.Y. Wu, L. Xiao, and G. Yin, Energy 95, 367 (2016).CrossRefGoogle Scholar
  13. 13.
    S. Lv, W. He, Q. Jiang, Z. Hu, X. Liu, H. Chen, and M. Liu, Energy Convers. Manag. 156, 167 (2018).CrossRefGoogle Scholar
  14. 14.
    W.H. Chen, S.R. Huang, X.D. Wang, P.H. Wu, and Y.L. Lin, Energy 133, 257 (2017).CrossRefGoogle Scholar
  15. 15.
    C.N. Kim, Appl. Therm. Eng. 130, 408 (2018).CrossRefGoogle Scholar
  16. 16.
    I. Arsie, A. Cricchio, C. Pianese, V. Ricciardi, and M. De Cesare, Energy Procedia 82, 81 (2015).CrossRefGoogle Scholar
  17. 17.
    Y. Zhang, J.D. Angelo, X. Wang, and J.Yang, in Directions in Engine-Efficiency and Emissions Research Conference (Dearborn, Michigan, 2012).Google Scholar
  18. 18.
    S. Yu, Q. Du, H. Diao, G. Shu, and K. Jiao, Appl. Energy 138, 276 (2015).CrossRefGoogle Scholar
  19. 19.
    X. Liu, C. Li, Y.D. Deng, and C.Q. Su, Int. J. Electr. Power Energy Syst. 67, 510 (2015).CrossRefGoogle Scholar
  20. 20.
    X. Gou, S. Yang, H. Xiao, and Q. Ou, Energy 52, 201 (2013).CrossRefGoogle Scholar
  21. 21.
    W. He, S. Wang, and L. Yue, Appl. Energy 196, 259 (2017).CrossRefGoogle Scholar
  22. 22.
    S. Lan, Z. Yang, R. Chen, and R. Stobart, Appl. Energy 210, 327 (2018).CrossRefGoogle Scholar
  23. 23.
    J. Eakburanawat and I. Boonyaroonate, Appl. Energy 83, 687 (2006).CrossRefGoogle Scholar
  24. 24.
    R. Anand, K. Adhithya, G. Balaji, and J. Harinarayanan, Int. J. Res. Eng. Technol. 4, 296 (2015).CrossRefGoogle Scholar
  25. 25.
    L. Sileghem, D. Bosteels, J. May, C. Favre, and S. Verhelst, Transp. Res. Part D Transp. Environ. 32, 70 (2014).CrossRefGoogle Scholar
  26. 26.
    A. Nour Eddine, D. Chalet, X. Faure, and L. Aixala, Energy 162, 715 (2018).CrossRefGoogle Scholar
  27. 27.
    H. Sara, D. Chalet, M. Cormerais, and J.-F. Hetet, Proc. Inst. Mech. Eng. Part D J. Automob. Eng. 232, 1019 (2018).CrossRefGoogle Scholar
  28. 28.
    H. Sara, D. Chalet, and M. Cormerais, J. Therm. Sci. Eng. Appl. 10, 041010 (2018).CrossRefGoogle Scholar
  29. 29.
    J.B. Heywood, Internal Combustion Engine Fundementals (New York: McGrawHill Series in Mechanical Engineering, 1988).Google Scholar
  30. 30.
    A. Nour Eddine, D. Chalet, X. Faure, L. Aixala, and P. Chessé, Energy 143, 682 (2018).CrossRefGoogle Scholar
  31. 31.
    H.W. Coleman, W.G. Steele, and H.W. Coleman, Experimentation, Validation, and Uncertainty Analysis for Engineers, 3rd ed. (New York: Wiley, 2009).CrossRefGoogle Scholar
  32. 32.
    J.R. Salvador, J.Y. Cho, Z. Ye, J.E. Moczygemba, A.J. Thompson, J.W. Sharp, J.D.K. Nig, R. Maloney, T. Thompson, J. Sakamoto, H. Wang, A.A. Wereszczak, and G.P. Meisner, J. Electron. Mater. 42, 1389 (2013).CrossRefGoogle Scholar
  33. 33.
    K. Bartholomé, B. Balke, D. Zuckermann, M. Köhne, M. Müller, K. Tarantik, and J. König, J. Electron. Mater. 43, 1775 (2014).Google Scholar
  34. 34.
    G.M. Fetene, A Report on Energy Consumption and Range of Battery Electric Vehicles Based on Real-World Driving Data, Department of Transport, Technical University of Denmark, Denmark, 2014.

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.LHEEA Lab. (ECN/CNRS)Ecole Centrale de NantesNantes cedex 3France
  2. 2.French Alternative and Atomic Energy Commission (CEA Grenoble)Grenoble cedex 9France
  3. 3.MANN+HUMMEL FranceLouvernéFrance

Personalised recommendations