Synthesis of Nanocrystalline SnxCd1−xS Thin Films Capped with Thioglycerol and Methanol (TGM) and Study of Optical and Structural Properties

  • Suman Pandey
  • Ruby DasEmail author


Nanostructured CdS (nCdS) and ternary SnxCd1−xS thin films capped with thioglycerol and methanol in 1:1 ratio in aqueous medium were prepared using hydrated stannous chloride (SnCl2·2H2O), anhydrous cadmium acetate (CH3COO)Cd·2H2O and thiourea (CS(NH2)2) as sources of Sn, Cd and S ions, respectively. Thickness of the film drastically decreases for low concentrations (0–2%) of Sn doping, then increases for (2–3%) and 5% Sn doping. Effects of Sn concentration variation on the optical properties, photoluminescence and structural properties of the nanoparticles were studied. The optical transmittance measurement using ultraviolet–visible–near infrared spectroscopy showed more than 80% transparency in the wavelength range 450–800 nm for 3% and 5% Sn doping. The direct optical band gap value of nanoCdS thin films was obtained as 2.91 eV, which decreased with Sn doping for its varying concentrations. Photoconductivity gain was negligible. A decrease in intensity of lower wavelength emission at 430 nm in nCdS was observed to have (2–5)% Sn content. X-ray diffraction patterns and selected area electron diffraction patterns confirmed formation of the nanocrystalline hexagonal CdSnS phase. Scanning electron microscope and transmission electron microscope measurements of the CdSnS thin films show that the particle size lies well under 20 nm.


Optical study photoluminescence SEM XRD TEM 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The authors are indebted to the management, Bhilai Institute of Technology, Durg for providing all the laboratory facilities for UV, PC and PL studies. The authors are also thankful to Sophisticated Analytical Instrument Facility (SAIF), KOCHI for providing the results of SEM, XRD and TEM studies.


  1. 1.
    Y.S. Lo, R.K. Choubey, W.C. Yu, W.T. Hsu, and C.W. Lan, Thin Solid Films 520, 217 (2011).CrossRefGoogle Scholar
  2. 2.
    S.D. Reddy, B. Kang, S.C. Yu, K.R. Gunasekhar, N.K. Rao, A. Divya, and S.P. Reddy, J. Optoelectron. Adv. Mater. 9, 3747 (2007).Google Scholar
  3. 3.
    E. Alkuam, M. Mohammed, and T.P. Chen, Sol. Energy 150, 317 (2017).CrossRefGoogle Scholar
  4. 4.
    M. Mohammadikish and H. Hajisadeghi, J. Mater. Sci. Mater. Electron. 28, 1455 (2017).CrossRefGoogle Scholar
  5. 5.
    S. Pandya and K. Rava, J. Mater. Sci. Mater. Electron. 28, 18031 (2017).CrossRefGoogle Scholar
  6. 6.
    H. Moualkia, G. Rekhila, A. Mahdjoub, and M. Trari, J. Mater. Sci. Mater. Electron. 28, 19105 (2017).CrossRefGoogle Scholar
  7. 7.
    S. Pillai and S. Bhushan, in Proceedings of Nano Thailand (2012), pp. 21–25.Google Scholar
  8. 8.
    R. Das and S. Pandey, CSVTU J. Adv. Mater. Eng. 7, 35 (2014).Google Scholar
  9. 9.
    R. Sethi, L. Kumar, P.K. Sharma, P. Mishra, and A.C. Pandey, in IEEE Xplore, 21 Mar 2008.
  10. 10.
    S. Horoz and O. Sahin, J. Mater. Sci. Mater. Electron. 28, 17784 (2017).CrossRefGoogle Scholar
  11. 11.
    J.A. Andrade-Arvizu, M. Courel-Piedrahita, and O. Vigil-Galán, J. Mater. Sci. Mater. Electron. 26, 4541 (2015).CrossRefGoogle Scholar
  12. 12.
    D. Avellaneda, B. Krishnan, A.C. Rodriguez, T.K. DasRoy, and S. Shaji, J. Mater. Sci. Mater. Electron. 26, 5585 (2015).CrossRefGoogle Scholar
  13. 13.
    R. Das and R. Kumar, Cryst. Res. Technol. 45, 725 (2010).CrossRefGoogle Scholar
  14. 14.
    K. Ravichandran, N. Nisha Banu, V. Senthamil Selvi, and P.V. Rajkumar, Mater. Res. Innov. 20, 187 (2016).CrossRefGoogle Scholar
  15. 15.
    M. Song and Y. Kim, J. Phys. Chem. C 119, 28199 (2015).CrossRefGoogle Scholar
  16. 16.
    D. Singh and M.M. Ahmad, Appl. Nano Sci. 3, 13 (2013).CrossRefGoogle Scholar
  17. 17.
    A. Al-Rasheedi, S. Wageh, E. Al-Zhrani, and A. Al-Ghamdi, J. Mater. Sci. Mater. Electron. (2017). Scholar
  18. 18.
    M.A. Aguilera, J.F. Márquez, M.G. Trujillo, Y.M. Kuwahara, G.R. Morales, and O.V. Galán, Energy Procedia 44, 111 (2014).CrossRefGoogle Scholar
  19. 19.
    A.M. Al-Hussam and S.A.J. Jassim, J. Assoc. Arab Univ. Basic Appl. Sci. 11, 27 (2012).Google Scholar
  20. 20.
    S.M. Mahdavi, A. Irajizad, A. Azarian, and R.M. Tilaki, Sci. Iran. 15, 360 (2008).Google Scholar
  21. 21.
    J. He, J. Chen, Y. Yu, L. Zhang, G. Zhang, S. Jiang, W. Liu, H. Song, and J. Tang, J. Mater. Sci. Mater. Electron. 25, 1499 (2014).CrossRefGoogle Scholar
  22. 22.
    D. Kusumanjali, S. Bhushan, and M. Mukherjee, Chalcogenide Lett. 7, 1 (2010).Google Scholar
  23. 23.
    M. Luo, Y. Liu, J. Hu, H. Liu, and J. Li, ACS. Appl. Mater. Interfaces 4, 1813 (2012).CrossRefGoogle Scholar
  24. 24.
    C. Martínez-Alonso, H.J. Cortina-Marrero, C. Selene Coria-Monroy, M.C. Arenas, M.E. Nicho, and H. Hu, J. Mater. Sci. Mater. Electron. 26, 5539 (2015).CrossRefGoogle Scholar
  25. 25.
    H.I. Salim, O.I. Olusola, A.A. Ojo, K.A. Urasov, M.B. Dergachev, and I.M. Dharmadasa, J. Mater. Sci. Mater. Electron. 27, 6786 (2016).CrossRefGoogle Scholar
  26. 26.
    K. GowrishRao and V.K. Ashith, J. Phys. Chem. Solids 77, 14 (2015).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.Department of PhysicsRungta College of Engineering and TechnologyBhilaiIndia
  2. 2.Department of Applied PhysicsBhilai Institute of TechnologyDurgIndia

Personalised recommendations