A Facile Approach of Fabricating Various ZnO Microstructures via Electrochemical Deposition
Abstract
A facile electrochemical route was proposed for the shape-selective synthesis of ZnO structures on conductive substrates. Our strategy for designing ZnO structures was based on a double-electrodes electrochemical deposition approach, in which the well-oriented ZnO structures with variable morphology on different conductive substrates could be adjusted by monitoring electrochemical parameters (e.g., zinc chloride concentration, deposition potential, and deposition temperature). The variation in deposition parameters led to the ZnO formation of different structures, such as ZnO flowers, sheets and aggregates. In addition, the analysis of I-V characteristics illustrated that the ZnO flowers were composed of sheets clustered on the graphite substrate and exhibited higher dark current than other structures. Furthermore, the remarkable Schottky contact behaviour was found for ZnO flowers deposited on carbon paper and copper foil substrates. This work demonstrates a simple method for tuning the growth of desired ZnO structures and exploring its application in functional optoelectronic devices.
Keywords
ZnO electrochemical deposition substrate I-V characteristicsPreview
Unable to display preview. Download preview PDF.
Notes
Acknowledgments
This work was supported by National Natural Science Foundation of China (No. 51406069); China Postdoctoral Science Foundation Special Project (No. 2016T90426); China Postdoctoral Science Foundation (No. 2015M581733); Jiangsu Planned Projects for Postdoctoral Research Funds (No. 1501107B); Training Project of Jiangsu University Youth Backbone Teacher; and National Natural Science Foundation of China (51572002).
Conflict of interest
The authors declare that they have no conflict of interest.
Supplementary material
References
- 1.M. Chen, L.F. Hu, J.X. Xu, M.Y. Liao, L.M. Wu, and X.S. Fang, Small 7, 2449 (2011).Google Scholar
- 2.X.S. Fang, Y. Bando, U.K. Gautam, C.H. Ye, and D. Golberg, J. Mater. Chem. 18, 509 (2008).CrossRefGoogle Scholar
- 3.J. Yan, X.S. Fang, L.D. Zhang, Y. Bando, U.K. Gautam, B. Dierre, T. Sekiguchi, and D. Golberg, Nano Lett. 8, 2794 (2008).CrossRefGoogle Scholar
- 4.Q.C. Liang, F. Qiao, X.J. Cui, and X.Y. Hou, Mat. Sci. Semicon. Proc. 89, 154 (2019).CrossRefGoogle Scholar
- 5.U.K. Gautam, M. Imura, C.S. Rout, Y. Bando, X.S. Fang, B. Dierre, L. Sakharov, A. Govindaraj, T. Sekiguchi, D. Golberg, and C.N.R. Rao, PNAS 107, 13588 (2010).CrossRefGoogle Scholar
- 6.Y. Zhang, C. Liu, F. Gong, B. Jiu, and F. Li, Mater. Lett. 186, 7 (2017).CrossRefGoogle Scholar
- 7.F. Qiao, Q.C. Liang, X.J. Cui, Q. Xu, Y. Xie, and H.Q. Chu, ES. Energ. Environ. https://doi.org/10.30919/esee8c187 (2018).
- 8.X. Deng, L. Zhang, J. Guo, Q. Chen, and J. Ma, Mater. Res. Bull. 90, 170 (2017).CrossRefGoogle Scholar
- 9.M. Tului, A. Bellucci, A. Albolino, and G. Migliozzi, Surf. Coat. Tech. 205, 1070 (2010).CrossRefGoogle Scholar
- 10.Y. Zhang, L. Wang, X. Liu, Y. Yan, C. Chen, and J. Zhu, J. Phys. Chem. B. 109, 13091 (2005).CrossRefGoogle Scholar
- 11.C.L. Wu, L. Chang, H.G. Chen, C.W. Lin, Y.C. Chao, and J.K. Yan, Thin Solid Films 498, 137 (2006).CrossRefGoogle Scholar
- 12.G. Zhong, A. Kalam, A.S. Al-Shihri, Q. Su, J. Li, and G. Du, Mater. Res. Bull. 47, 1467 (2012).CrossRefGoogle Scholar
- 13.J. Chen, J. Chen, D. Chen, Y. Zhou, W. Li, Y. Ren, and L. Hu, Mater. Lett. 117, 162 (2014).CrossRefGoogle Scholar
- 14.S. Bai, C. Sun, T. Guo, R. Luo, Y. Lin, A. Chen, L. Sun, and J. Zhang, Electrochim. Acta 90, 530 (2013).CrossRefGoogle Scholar
- 15.N. Oleynik, M. Adam, A. Krtschil, J. Bläsing, A. Dadgar, F. Bertram, D. Forster, A. Diez, A. Greiling, M. Seip, J. Christen, and A. Krost, J. Cryst. Growth 248, 14 (2003).CrossRefGoogle Scholar
- 16.C. Ou, P.E. Sanchez-Jimenez, A. Datta, F.L. Boughey, R.A. Whiter, S.L. Sahonta, and S. Kar-Narayan, ACS. Appl. Mater. Inter. 8, 13678 (2016).CrossRefGoogle Scholar
- 17.Z. Chen, W. Ren, G. Libo, B. Liu, S. Pei, and H. Cheng, Nat. Mater. 10, 424 (2011).CrossRefGoogle Scholar
- 18.X. Dong, Y. Ma, G. Zhu, Y. Huang, J. Wang, M.B. Chan-Park, L. Wang, W. Huang, and P. Chen, J. Mater. Chem. 22, 17044 (2012).CrossRefGoogle Scholar
- 19.T. Maiyalagan, X. Dong, P. Chen, and X. Wang, J. Mater. Chem. 22, 5286 (2012).CrossRefGoogle Scholar