The Crystallization Kinetics of Ni-Mn-Ga Magnetic Shape Memory Alloy Thin Films

  • Jiachen Zhu
  • Changlong TanEmail author
  • WenBin Zhao
  • ZhaiPing Yang
  • Kun Zhang
  • Wei Cai


The crystallization mechanism of Ni-Mn-Ga thin films and the reason for the difference of crystallization temperatures of Ni-Mn-based magnetic shape memory alloys (MSMAs) are unknown. Here, the crystallization kinetics of Ni53Mn28Ga19 magnetic shape memory alloy thin films have been determined by non-isothermal and isothermal differential scanning calorimetry (DSC). The reason for the difference of crystallization temperatures of Ni-Mn-based MSMAs was studied by the first-principles methods. The crystal structure of annealed Ni53Mn28Ga19 thin films are 7 M martensite. In non-isothermal DSC, crystallization peak temperatures are 588.2 K, 593.7 K, 601.3 K, 604.6 K and 608.2 K at different heating rates. The apparent activation energy calculated by Kissinger’s method is 148.3 kJ/mol. For isothermal crystallization, the Avrami exponent of Ni53Mn28Ga19 thin films is approximately 1.6. The local Avrami exponents n(x) which range from 1.1 to 2.8 imply that the crystallization mechanism of Ni53Mn28Ga19 thin films changes from one-dimensional diffusion-controlled growth to two-dimensional and three-dimensional diffusion-controlled growth. Moreover, it is found that crystallization peak temperatures of Ni-Mn-based MSMAs increase with their increasing vacancy formation energy with Ni vacancy.


Magnetic shape memory alloys Ni-Mn-Ga thin films crystallization kinetics Avrami exponents vacancy formation energy 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The authors acknowledge the supports of the National Natural Science Foundation of China (Grant Nos. 51471064 and 51871083), and the Program for Youth Academic Backbone in Heilongjiang Provincial University (Grant No. 1251G022).


  1. 1.
    R. Kainuma, Y. Imano, W. Ito, Y. Sutou, H. Morito, S. Okamoto, O. Kitakami, K. Oikawa, A. Fujita, T. Kanomata, and K. Ishida, Nature 439, 957 (2006).CrossRefGoogle Scholar
  2. 2.
    T. Krenke, M. Acet, E.F. Wassermann, X. Moya, L. Manosa, and A. Planes, Phys. Rev. B. 72, 014412 (2005).CrossRefGoogle Scholar
  3. 3.
    Y. Sutou, Y. Imano, N. Koeda, T. Omori, R. Kainuma, K. Ishida, and K. Oikawa, Appl. Phys. Lett. 85, 4358 (2004).CrossRefGoogle Scholar
  4. 4.
    K. Ullakko, J.K. Huang, C. Kantner, R.C. O’Handley, and V.V. Kokorin, Appl. Phys. Lett. 69, 1966 (1996).CrossRefGoogle Scholar
  5. 5.
    H.E. Karaca, I. Karaman, B. Basaran, Y.I. Chumlyakov, and H.J. Maier, Acta Mater. 54, 233 (2006).CrossRefGoogle Scholar
  6. 6.
    V.A. Chernenko, C. Seguí, Iacute, E. Cesari, J. Pons, and V.V. Kokorin, Phys. Rev. B. 57, 2659 (1998).CrossRefGoogle Scholar
  7. 7.
    W. Ito, Y. Imano, R. Kainuma, Y. Sutou, K. Oikawa, and K. Ishida, Metall. Mater. Trans. A 38, 759 (2007).CrossRefGoogle Scholar
  8. 8.
    A. Sozinov, A.A. Likhachev, N. Lanska, and K. Ullakko, Appl. Phys. Lett. 80, 1746 (2002).CrossRefGoogle Scholar
  9. 9.
    S.J. Murray, M. Marioni, S.M. Allen, R.C. Ohandley, and T.A. Lograsso, Appl. Phys. Lett. 77, 886 (2000).CrossRefGoogle Scholar
  10. 10.
    D.C. Dunand and P. Müllner, Adv. Mater. 23, 216 (2011).CrossRefGoogle Scholar
  11. 11.
    J.W. Dong, J. Appl. Phys. 95, 2593 (2004).CrossRefGoogle Scholar
  12. 12.
    R. Żuberek, O.M. Chumak, A. Nabiałek, M. Chojnacki, and I. Radelytskyi, J. Alloy. Compd. 748, 1 (2018).CrossRefGoogle Scholar
  13. 13.
    Y. Zhang, R.A. Hughes, J.F. Britten, P.A. Dube, and J.S. Preston, J. Appl. Phys. 110, 013910 (2011).CrossRefGoogle Scholar
  14. 14.
    H. Rumpf, D. Lewandowski, and B. Winzek, in SPIE Conference (2003), pp. 191–199.Google Scholar
  15. 15.
    F. Bernard, P. Delobelle, C. Rousselot, and L. Hirsinger, Thin Solid Films 518, 399 (2009).CrossRefGoogle Scholar
  16. 16.
    M. Kohl, D. Brugger, M. Ohtsuka, and T. Takagi, Sens. Actuators A. Phys. 114, 445 (2004).CrossRefGoogle Scholar
  17. 17.
    S.A. Wilson, R.P.J. Jourdain, Q. Zhang, R.A. Dorey, and C.R. Bowen, Mater. Sci. Eng. R. 56, 1 (2007).CrossRefGoogle Scholar
  18. 18.
    M. Kohl, A. Agarwal, and V.A. Chernenko, Mater. Sci. Eng. A. 438, 940 (2006).CrossRefGoogle Scholar
  19. 19.
    M. Kohl, Y. Liu, B. Krevet, S. Dürr, and M. Ohtsuka, J. Phys. IV 115, 333 (2004).Google Scholar
  20. 20.
    D. Auernhammer, M. Kohl, and B. Krevet, Smart Mater. Struct. 18, 1104016 (2009).CrossRefGoogle Scholar
  21. 21.
    H. Rumpf, C.M. Craciunescu, H. Modrow, K. Olimov, and E. Quandt, J. Magn. Magn. Mater. 302, 421 (2006).CrossRefGoogle Scholar
  22. 22.
    J. Yao, X. Zheng, W. Cai, and J. Sui, J. Alloy. Compd. 661, 43 (2016).CrossRefGoogle Scholar
  23. 23.
    C. Liu, Z.Y. Gao, X. An, M. Saunders, and H. Yang, J. Magn. Magn. Mater. 320, 1078 (2008).CrossRefGoogle Scholar
  24. 24.
    S.K. Wu, K.H. Tseng, and J.Y. Wang, Thin Solid Films 408, 316 (2002).CrossRefGoogle Scholar
  25. 25.
    C. Liu, L.X. Gao, H. Yang, M. Saunders, X. An, Z.Y. Gao, and W. Cai, Rare Met. 29, 139 (2007).Google Scholar
  26. 26.
    K.B.J. Buschow, Solid State Commun. 43, 171 (1982).CrossRefGoogle Scholar
  27. 27.
    X.H. Tian, Z.H. Wang, J.C. Zhu, C.L. Tan, K. Zhang, Z. Yu, and W. Cai, J. Non-Cryst. Solids 495, 19 (2018).CrossRefGoogle Scholar
  28. 28.
    V. Sánchez-Alarcos, V. Recarte, J.I. Pérez-Landazábal, S. Larumbe, and R. Caballero, J. Alloy. Compd. 689, 983 (2016).CrossRefGoogle Scholar
  29. 29.
    G. Kresse and D. Joubert, Phys. Rev. B. 59, 1758 (1999).CrossRefGoogle Scholar
  30. 30.
    Z.P. Yang, C.L. Tan, Z.Y. Gao, Y. Gao, and W. Cai, Thin Solid Films 632, 10 (2017).CrossRefGoogle Scholar
  31. 31.
    J.Z. Chen and S.K. Wu, Thin Solid Films 339, 194 (1999).CrossRefGoogle Scholar
  32. 32.
    Z.Z. Yuan, X.D. Chen, B.X. Wang, and Z.J. Chen, J. Alloys Compd. 399, 166 (2005).CrossRefGoogle Scholar
  33. 33.
    A.A. Pratap, K.N. Lad, T.L.S. Rao, P. Majmudar, and N.S. Saxena, J. Non Cryst. Solids 345, 178 (2004).CrossRefGoogle Scholar
  34. 34.
    Y. Lei, H.J. Zhao, W. Cai, X. An, and L. Gao, Phys. B 405, 947 (2010).CrossRefGoogle Scholar
  35. 35.
    R.A. Ligero, J. Vázquez, P. Villares, and R. Jiménez-Garay, Mater. Lett. 8, 6 (1989).CrossRefGoogle Scholar
  36. 36.
    H.E. Kissinger, Anal. Chem. 29, 1702 (1957).CrossRefGoogle Scholar
  37. 37.
    C.D. Doyle, J. Appl. Polym. Sci. 5, 1845 (1961).CrossRefGoogle Scholar
  38. 38.
    M. Avrami, J. Chem. Phys. 7, 1103 (1939).CrossRefGoogle Scholar
  39. 39.
    J. Málek, Thermochim. Acta 267, 61 (1995).CrossRefGoogle Scholar
  40. 40.
    A. Calka and A.P. Radinski, J. Mater. Res. 3, 59 (1985).CrossRefGoogle Scholar
  41. 41.
    J.W. Graydon, S.J. Thorpe, and D.W. Kirk, Acta Metall. Mater. 43, 1363 (1995).CrossRefGoogle Scholar
  42. 42.
    Z.G. Huang, Z.P. Guo, D. Wexler, K. Konstantinov, and H.K. Liu, J. Alloy. Compd. 426, 335 (2006).CrossRefGoogle Scholar
  43. 43.
    D.C. Wu, L.J. Huang, and G.Y. Liang, Acta Phys. Sin. 57, 1813 (2008).Google Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  • Jiachen Zhu
    • 1
  • Changlong Tan
    • 1
    Email author
  • WenBin Zhao
    • 1
  • ZhaiPing Yang
    • 2
  • Kun Zhang
    • 1
  • Wei Cai
    • 2
  1. 1.School of ScienceHarbin University of Science and TechnologyHarbinChina
  2. 2.School of Materials Science and EngineeringHarbin Institute of TechnologyHarbinChina

Personalised recommendations