Microwave Absorbing Properties of Flaky Carbonyl Iron Powder Prepared by Rod Milling Method
- 3 Downloads
Abstract
The rod milling method of cylindrical-shaped milling medium was applied to prepare the flaky carbonyl iron powders with varying milling times (10 h, 15 h and 20 h). The sample obtained by the spherical milling medium was also used as a contrast. The samples were characterized by x-ray diffraction, scanning electron microscopy and Raman spectroscopy, respectively. The complex permittivity and permeability were measured by vector network analyzer in the frequency range of 1–18 GHz. The results revealed that cylinder-prepared samples have better impedance matching properties and good absorbing properties. The minimum reflection loss (RL) of − 15.7 dB was observed at 6.0 GHz with a thickness of 1.5 mm, and the effective absorption frequency (RL < − 10 dB) ranged from 4.5 GHz to 8.5 GHz. This method is expected to play an important role for the promising design of flaky microwave absorbers, which can be applied to fifth-generation (5G) communication.
Keywords
Milling medium milling time microstructure microwave absorber carbonyl iron powdersPreview
Unable to display preview. Download preview PDF.
Notes
Acknowledgments
This work was supported by the National Natural Science Foundation of China (Grant No. 11304159); the Introduction of Talent Scientific Research Fund of Nanjing University of Posts and Telecommunications (Grant No. NY213016).
References
- 1.L. Yan, J. Wang, X. Han, Y. Ren, Q. Liu, and F. Li, Nanotechnology 21, 095708 (2010).CrossRefGoogle Scholar
- 2.N. Tian, C.Y. You, J. Liu, F. Qu, C.H. Wang, and Z.X. Lu, J. Magn. Magn. Mater. 339, 114 (2013).CrossRefGoogle Scholar
- 3.Á. Kukovecz, T. Kanyó, Z. Kónya, and I. Kiricsi, Carbon 43, 994 (2005).CrossRefGoogle Scholar
- 4.P. Baláž and E. Dutková, Miner. Eng. 22, 681 (2009).CrossRefGoogle Scholar
- 5.L. Russo, F. Colangelo, R. Cioffi, I. Rea, and L.D. Stefano, Materials 4, 1023 (2011).CrossRefGoogle Scholar
- 6.L. Takacs, Prog. Mater. Sci. 47, 355 (2002).CrossRefGoogle Scholar
- 7.N.S. Lameck, K.K. Kiangi, and M.H. Moys, Miner. Eng. 19, 1357 (2006).CrossRefGoogle Scholar
- 8.F.L. von Krüger, J.D. Donda, M.A.R. Drummond, and A.E.C. Peres, Dev. Miner. Process. 13, C4–86 (2000). https://doi.org/10.1016/S0167-4528(00)80031-9.Google Scholar
- 9.A.Z.M. Abouzeid and D.W. Fuerstenau, Int. J. Miner. Process. 102, 51 (2012).CrossRefGoogle Scholar
- 10.M.D. Sinnott, P.W. Cleary, and R.D. Morrison, Miner. Eng. 24, 138 (2011).CrossRefGoogle Scholar
- 11.P. Bhattacharya and C.K. Das, Ind. Eng. Chem. Res. 52, 9594 (2013).CrossRefGoogle Scholar
- 12.Y. Kato, M. Horibe, M. Ameya, and S. Kurokawa, IEEE Trans. Instrum. Meas. 64, 1748 (2015).CrossRefGoogle Scholar
- 13.H. Zhao, S.Y. Xu, D.M. Tang, Y. Yang, and B.S. Zhang, J. Appl. Phys. 116, 243911 (2014).CrossRefGoogle Scholar
- 14.Y.C. Qing, W.C. Zhou, F. Luo, and D.M. Zhu, J. Magn. Magn. Mater. 323, 600 (2011).CrossRefGoogle Scholar
- 15.J. Sandler, M. Shaffer, T. Prasse, W. Bauhofer, K. Schulte, and A.H. Windle, Polymer 40, 5967 (1999).CrossRefGoogle Scholar
- 16.J. He, W. Wang, and J. Guan, J. Appl. Phys. 111, 093924 (2012).CrossRefGoogle Scholar
- 17.F.S. Wen, W.L. Zuo, H.B. Yi, N. Wang, L. Qiao, and F.S. Li, Phys. B Condens. Matter 404, 3567 (2009).CrossRefGoogle Scholar
- 18.J. Sun, H. Xu, Y. Shen, H. Bi, W. Liang, and R.B. Yang, J. Alloys Compd. 548, 18 (2013).CrossRefGoogle Scholar
- 19.D. Graf, F. Molitor, K. Ensslin, C. Stampfer, A. Jungen, C. Hierold, and L. Wirtz, Nano Lett. 7, 238 (2007).CrossRefGoogle Scholar
- 20.A. Naik, J. Zhou, C. Gao, G. Liu, and L. Wang, J. Energy Inst. 89, 21 (2016).CrossRefGoogle Scholar
- 21.X. Weng, B. Li, Y. Zhang, X. Lv, and G. Gu, J. Alloys Compd. 695, 508 (2017).CrossRefGoogle Scholar
- 22.A. Hajalilou, M. Hashim, M. Nahavandi, and I. Ismail, Adv. Powder Technol. 25, 423 (2014).CrossRefGoogle Scholar
- 23.S.S. Kim, S.T. Kim, Y.C. Yoon, and K.S. Lee, J. Appl. Phys. 97, 10F905 (2005). https://doi.org/10.1063/1.1852371.CrossRefGoogle Scholar
- 24.R.B. Yang and W.F. Liang, J. Appl. Phys. 109, 07A311 (2011). https://doi.org/10.1063/1.3536340.CrossRefGoogle Scholar
- 25.Y.B. Feng, T. Qiu, C.Y. Shen, and X.Y. Li, IEEE Trans. Magn. 42, 363 (2006).CrossRefGoogle Scholar
- 26.P.C. Ji, G.Z. Xie, N.Y. Xie, J. Li, J.W. Chen, R.Q. Xu, and J. Chen, J. Mater. Sci. Mater. Electron. 29, 4711 (2018).CrossRefGoogle Scholar
- 27.S. Yoshida, S. Ando, Y. Shimada, and K. Suzuki, J. Appl. Phys. 93, 6659 (2003).CrossRefGoogle Scholar
- 28.T. Maeda, S. Sugimoto, T. Kagotani, N. Tezuka, and K. Inomata, J. Magn. Magn. Mater. 281, 195 (2004).CrossRefGoogle Scholar
- 29.L.J. Deng, P.H. Zhou, J.L. Xie, and L. Zhang, J. Appl. Phys. 101, 103916 (2007). https://doi.org/10.1063/1.2733610.CrossRefGoogle Scholar
- 30.W. Liu, Q. Shao, G. Ji, X. Liang, Y. Cheng, B. Quan, and Y. Du, Chem. Eng. J. 313, 734 (2017).CrossRefGoogle Scholar
- 31.F.S. Wen, L. Qiao, D. Zhou, W.L. Zuo, H.B. Yi, and F.S. Li, Chin. Phys. B 17, 2263 (2008).CrossRefGoogle Scholar
- 32.M. Wu, Y.D. Zhang, S. Hui, T.D. Xiao, S.H. Ge, W.A. Hines, J.I. Budnick, and G.W. Taylor, Appl. Phys. Lett. 80, 4404 (2002).CrossRefGoogle Scholar
- 33.X.F. Zhang, X.L. Dong, H. Huang, Y.Y. Liu, W.N. Wang, X.G. Zhu, B. Lv, J.P. Lei, and C.G. Lee, Appl. Phys. Lett. 89, 053115 (2006).CrossRefGoogle Scholar
- 34.L. Qiao, F.S. Wen, J.Q. Wei, J.B. Wang, and F.S. Li, J. Appl. Phys. 103, 063903 (2008).CrossRefGoogle Scholar
- 35.T. Kasagi, T. Tsutaoka, and K. Hatakeyama, IEEE Trans. Magn. 35, 3424 (2002).CrossRefGoogle Scholar