High Capacity Na-Ion Battery Anodes by Coating Multi-walled Carbon Nanotubes on the Ni-Sn Foam Substrate

  • Shokufeh VarshoyEmail author
  • Bahram Khoshnevisan
  • Mohsen Behpour


In this study, Ni/multi-walled carbon nanotube (MWCNT) and Ni-Sn/MWCNT electrodes were fabricated by coating MWCNTs on Ni and Ni-Sn foam substrates using an electrophoretic deposition process. The anodic performance was examined by a chronopotentiometry method for adsorption of sodium (Na) in Na-ion batteries, where Ni/MWCNT and Ni-Sn/MWCNT nanocomposites were used as working electrodes in a three-electrode cell. Our results showed that, while the discharge capacity of the Ni/MWCNT electrode remained constant to approximately 200 mAh g−1, a record-high initial discharge capacity of 2500 mAh g−1 was obtained for the Ni-Sn/MWCNT nanocomposite electrode at a current of 1 mA. Increasing the cycle number indicated that 890 mAh g−1 was the capacity of Ni-Sn/MWCNT after 50 cycles, which was attributed to the solid electrolyte interface formation. The presence of MWCNTs provided cycle stability, thus making the resulting electrodes appropriate for Na-ion battery applications with high capacity.


Multi-walled carbon nanotube Ni-Sn foam electrophoretic deposition Na-ion battery high capacity solid electrolyte interface 



Carbon nanotubes


Multi-walled CNTs


Electrophoretic deposition


Scanning electron microscopy


Solid electrolyte interface


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    M.K. Datta, R. Epur, P. Saha, K. Kadakia, S.K. Park, and P.N. Kumta, J. Power Sources 225, 316 (2013).CrossRefGoogle Scholar
  2. 2.
    S.W. Kim, D.H. Seo, X. Ma, G. Ceder, and K. Kang, Adv. Energy Mater. 2, 710 (2012).CrossRefGoogle Scholar
  3. 3.
    M. Liu, X. Li, H. Ming, J. Adkins, X. Zhao, L. Su, Q. Zhoub, and J. Zheng, New J. Chem. 37, 2096 (2013).CrossRefGoogle Scholar
  4. 4.
    A.K. Mondal, H. Liu, Z.F. Li, and G. Wang, Electrochim. Acta 190, 346 (2016).CrossRefGoogle Scholar
  5. 5.
    Y.M. Lin, P.R. Abel, A. Gupta, J.B. Goodenough, A. Heller, and C.B. Mullins, ACS Appl. Mater. Interfaces 5, 8273 (2013).CrossRefGoogle Scholar
  6. 6.
    W.E.S. Jr, D.R. Janecky, and M.J. Mottl, Geochim. Cosmochim. Acta 48, 557 (1984).CrossRefGoogle Scholar
  7. 7.
    D.H. Nam, K.S. Hong, S.J. Lim, and H.S. Kwon, J. Power Sources 247, 423 (2014).CrossRefGoogle Scholar
  8. 8.
    X. Xie, K. Kretschmer, J. Zhang, B. Sun, D. Su, and G. Wangn, Nano Energy 13, 208 (2015).CrossRefGoogle Scholar
  9. 9.
    Y.U. Park, D.H. Seo, H.S. Kwon, B. Kim, J. Kim, H. Kim, I. Kim, H.I. Yoo, and K. Kang, J. Am. Chem. Soc. 135, 13870 (2013).CrossRefGoogle Scholar
  10. 10.
    Y. Shao, J. Xiao, W. Wang, M. Engelhard, X. Chen, Z. Nie, M. Gu, L.V. Saraf, G. Exarhos, J.G. Zhang, and J. Liu, Nano Lett. 13, 3909 (2013).CrossRefGoogle Scholar
  11. 11.
    Z. Zhu, F. Cheng, Z. Hu, Z. Niu, and J. Chen, J. Power Sources 293, 626 (2015).CrossRefGoogle Scholar
  12. 12.
    Y. Zhang, P. Zhu, L. Huang, J. Xie, S. Zhang, G. Cao, and X. Zhao, Adv. Funct. Mater. 25, 481 (2015).CrossRefGoogle Scholar
  13. 13.
    W. Luo, J. Schardt, C. Bommier, B. Wang, J. Razink, J. Simonsen, and X. Ji, J. Mater. Chem. A 1, 10662 (2013).CrossRefGoogle Scholar
  14. 14.
    Y. Cao, L. Xiao, M.L. Sushko, W. Wang, B. Schwenzer, J. Xiao, Z. Nie, L.V. Saraf, Z. Yang, and J. Liu, Nano Lett. 12, 3783 (2012).CrossRefGoogle Scholar
  15. 15.
    J. Ding, H. Wang, Z. Li, A. Kohandehghan, K. Cui, Z. Xu, B. Zahiri, X. Tan, E.M. Lotfabad, B.C. Olsen, and D. Mitlin, ACS Nano 7, 11004 (2013).CrossRefGoogle Scholar
  16. 16.
    X. Zhou, Z. Dai, J. Bao, and Y.G. Guo, J. Mater. Chem. A 1, 13727 (2013).CrossRefGoogle Scholar
  17. 17.
    W.J. Li, S.L. Chou, J.Z. Wang, H.K. Liu, and S.X. Dou, Nano Lett. 13, 5480 (2013).CrossRefGoogle Scholar
  18. 18.
    Y. Wang, D. Su, C. Wang, and G. Wang, Electrochem. Commun. 29, 8 (2013).CrossRefGoogle Scholar
  19. 19.
    Y.X. Wang, Y.G. Lim, M.S. Park, S.L. Chou, J.H. Kim, H.K. Liu, S.X. Doub, and Y.J. Kim, J. Mater. Chem. A 2, 529 (2014).CrossRefGoogle Scholar
  20. 20.
    X. Xie, D. Su, S. Chen, J. Zhang, S. Dou, and G. Wang, Chem. Asian J. 9, 1611 (2014).CrossRefGoogle Scholar
  21. 21.
    T. Zhou, W.K. Pang, C. Zhang, J. Yang, Z. Chen, H.K. Liu, and Z. Guo, ACS Nano 8, 8323 (2014).CrossRefGoogle Scholar
  22. 22.
    B. Qu, C. Ma, G. Ji, C. Xu, J. Xu, Y.S. Meng, T. Wang, and J.Y. Lee, Adv. Mater. 26, 3854 (2014).CrossRefGoogle Scholar
  23. 23.
    X. Han, Y. Liu, Z. Jia, Y.C. Chen, J. Wan, N. Weadock, K.J. Gaskell, T. Li, and L. Hu, Nano Lett. 14, 139 (2014).CrossRefGoogle Scholar
  24. 24.
    Y. Liu, Y. Xu, Y. Zhu, J.N. Culver, C.A. Lundgren, K. Xu, and C. Wang, ACS Nano 7, 3627 (2013).CrossRefGoogle Scholar
  25. 25.
    H. Zhu, Z. Jia, Y. Chen, N. Weadock, J. Wan, O. Vaaland, X. Han, T. Li, and L. Hu, Nano Lett. 13, 3093 (2013).CrossRefGoogle Scholar
  26. 26.
    L. Wu, X. Hu, J. Qian, F. Pei, F. Wu, R. Mao, X. Ai, H. Yang, and Y. Cao, J. Mater. Chem. A 1, 7181 (2013).CrossRefGoogle Scholar
  27. 27.
    T. Yamamoto, T. Nohira, R. Hagiwara, A. Fukunaga, S. Sakai, K. Nitta, and S. Inazaw, J. Power Sources 217, 479 (2012).CrossRefGoogle Scholar
  28. 28.
    P.R. Abel, M.G. Fields, A. Heller, and C.B. Mullins, ACS Appl. Mater. Interfaces 6, 15860 (2014).CrossRefGoogle Scholar
  29. 29.
    M. Mohammadi, B. Khoshnevisan, and S. Varshoy, Int. J. Hydrogen Energy 41, 10311 (2016).CrossRefGoogle Scholar
  30. 30.
    B.J.C. Thomas, A.R. Boccaccini, and M.S.P. Shaffer, J. Am. Ceram. Soc. 88, 980 (2005).CrossRefGoogle Scholar
  31. 31.
    B. Khoshnevisan, M. Behpour, S.M. Ghoreishi, and M. Hemmati, Int. J. Hydrogen Energy 32, 3860 (2007).CrossRefGoogle Scholar
  32. 32.
    W. Lee, S.B. Lee, J.W. Yi, B.S. Kim, and J.H. Byun, Electrochem. Solid-State Lett. 14, 37 (2011).CrossRefGoogle Scholar
  33. 33.
    M. Uysal, T. Cetinkaya, M. Kartal, A. Alp, and H. Akbulut, Thin Solid Films 572, 216 (2014).CrossRefGoogle Scholar
  34. 34.
    A.R. Boccaccini, J. Cho, J.A. Roether, B.J.C. Thomas, E.J. Minay, and M.S.P. Shaffer, Carbon 44, 3149 (2006).CrossRefGoogle Scholar
  35. 35.
    L. Huang, J.S. Cai, Y. He, F.S. Ke, and S.G. Sun, Electrochem. Commun. 11, 950 (2009).CrossRefGoogle Scholar
  36. 36.
    G.O. Siqueira, A.O. Porto, G.M. Lima, and T. Matencio, J. Organomet. Chem. 715, 48 (2012).CrossRefGoogle Scholar
  37. 37.
    H. Groult, H.E. Ghallali, A. Barhoun, E. Briot, C. Julien, F. Lantelme, and S. Borensztjan, Electrochim. Acta 56, 2656 (2011).CrossRefGoogle Scholar
  38. 38.
    J. Liu, Y. Wen, P.A. Aken, J. Maier, and Y. Yu, Nano Lett. 14, 6387 (2014).CrossRefGoogle Scholar
  39. 39.
    Y. Wang, M. Wu, Z. Jiao, and J.Y. Lee, Chem. Mater. 21, 3210 (2009).CrossRefGoogle Scholar
  40. 40.
    S. Komaba, W. Murata, T. Ishikawa, N. Yabuuchi, T. Ozeki, T. Nakayama, A. Ogata, K. Gotoh, and K. Fujiwara, Adv. Funct. Mater. 21, 3859 (2011).CrossRefGoogle Scholar
  41. 41.
    D. Su, C. Wang, H. Ahn, and G. Wang, Phys. Chem. Chem. Phys. 15, 12543 (2013).CrossRefGoogle Scholar
  42. 42.
    Z. Wang, L. Qie, L. Yuan, W. Zhang, X. Hu, and Y. Huan, Carbon 55, 328 (2013).CrossRefGoogle Scholar
  43. 43.
    D.A. Stevens and J.R. Dahn, J. Electrochem. Soc. 147, 1271 (2000).CrossRefGoogle Scholar
  44. 44.
    K. Tang, L. Fu, R.J. White, L. Yu, M.M. Titirici, M. Antonietti, and J. Maier, Adv. Energy Mater. 2, 873 (2012).CrossRefGoogle Scholar
  45. 45.
    L. David, R. Bhandavat, and G. Singh, ACS Nano 8, 1759 (2014).CrossRefGoogle Scholar
  46. 46.
    J. Cui, Z.L. Xu, S. Yao, J. Huang, J.Q. Huang, S. Abouali, M.A. Garakani, X. Ning, and J.K. Kim, J. Mater. Chem. A 4, 10964 (2016).CrossRefGoogle Scholar
  47. 47.
    Y. Xu, J. Guo, and C. Wang, J. Mater. Chem. 22, 9562 (2012).CrossRefGoogle Scholar
  48. 48.
    Y. Xu, R. Yi, B. Yuan, X. Wu, M. Dunwell, Q. Lin, L. Fei, S. Deng, P. Andersen, D. Wang, and H. Luo, J. Phys. Chem. Lett. 3, 309 (2012).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.Institute of Nanoscience and NanotechnologyUniversity of KashanKashanIran
  2. 2.Faculty of PhysicsUniversity of KashanKashanIran
  3. 3.Department of Analytical Chemistry, Faculty of ChemistryUniversity of KashanKashanIran

Personalised recommendations