Advertisement

Transport Properties of Chalcopyrite (CuFeS2) in a Wide Range of Temperatures

  • I. M. BabarEmail author
  • Saba Javaid
  • Shabana Rizvi
Article

Abstract

We studied the transport properties of American chalcopyrite ore in a wide range of temperatures. Electrical resistivity of the sample is studied both at low (77–300 K) and high temperature (300–450 K), thermoelectric power from 300 K to 400 K, and AC magnetic susceptibility in the temperature range 77–300 K. The electrical resistivity measurement shows step wise increasing conductivity with increasing temperature that is quantum conductance is observed. Thermoelectric power measurement in the temperature range 300–400 K shows a wriggling effect. Susceptibility measurement in the temperature range 77–300 K shows a positive peak at 80 K, hence a ferromagnetic response and a negative peak at 90 K shows a diamagnetic response. Later on, when increasing the temperature up to 300 K, the susceptibility is positive and almost remains constant, which reveals an antiferromagnetic behavior in the temperature range 150–300 K. The characterization of the sample (American chalcopyrite) is done by using scanning electron microscopy (SEM), energy dispersive x-ray spectroscopy (EDS) and x-ray diffraction (XRD) analysis. The SEM analysis shows the surface of the chalcopyrite sample with two different phases. The EDS analysis reveals that the sample contains copper (Cu) 19%, iron (Fe) 23% and sulfur (S) 20% by atomic percent, along with some other impurities. On the basis of this composition we suggest that chalcopyrite is a semiconductor as it contains oxygen (O), carbon (C) and sulfur (S) as impurity elements. The XRD analysis shows that the sample has a body-centered tetragonal structure.

Keywords

Chalcopyrite resistivity thermoelectric power susceptibility temperature 

Notes

References

  1. 1.
    D.F. Pridemore and R.T. Shuey, Am. Miner. 61, 248 (1976).Google Scholar
  2. 2.
    S. Rizvi, S.M.M.R. Naqvi, S.M. Raza, S.D.H. Rizvi, and S. Kamaluddin, Pak. J. Sci. Ind. Res. 53, 117 (2010).Google Scholar
  3. 3.
    I.K. Khabibullin, E.V. Schmidt, and V.L. Matukhin, Semiconductors 43, 1650 (2009).Google Scholar
  4. 4.
    A. Rais, A.M. Gismelseed, and A.D. Al-Rawas, Mater. Lett. 46, 349 (2000).Google Scholar
  5. 5.
    S.M.M.R Naqvi, S. Rizvi, S.D.H. Rizvi, S.Z. Abbas, S.M. Raza, and M. Ahmed, (2005). in 9th int. symp. on adv. Mater. Proc. (2005), p. 429–433.Google Scholar
  6. 6.
    G.V. Gibbs, D.F. Cox, K.M. Rosso, N.L. Rross, R.T. Downs, and M.A. Spacman, J. Phys. Chem. B 111, 1923 (2007).Google Scholar
  7. 7.
    T. Teranishi, J. Phys. Soc. Jpn. 16, 1961 (1881).Google Scholar
  8. 8.
    M.I. Youssif, A.A. Bahgat, and I.A. Ali, Egypt J. Sol. 23, 231 (2000).Google Scholar
  9. 9.
    F. Gömöry, Supercond. Sci. Technol. 10, 523 (1997).Google Scholar
  10. 10.
    L.M. Suslikov, V.Y. Slivka, and M.P. Lisitsa, Solid-State Optical Filters on Gyrotropic Crystals (Kyiv: Interpress Ltd., 1998).Google Scholar
  11. 11.
    I.Kh. Khabibullin, E.V. Smidt, D.E. Shul’gin, and V.L. Matukhin, Russ. Phys. J. 50.4, 405 (2007).Google Scholar
  12. 12.
    X. Martí, I. Fina, and T. Jungwirth, IEEE Trans. Magnetics 51.4, 1 (2015).Google Scholar
  13. 13.
    S. Fukami, C. Zhang, S. DuttaGupta, A. Kurenkov, and H. Ohno, Nat. Mater. 15, 535 (2016).Google Scholar
  14. 14.
    S. Rizvi, S.M.M.R. Naqvi, S.M. Raza, S.D.H. Rizvi, and S. Kamaluddin, Pak. J. Sci. Ind. Res. 53.3, 117 (2010).Google Scholar
  15. 15.
    K. Hiroshi and K. Mikihiko, in Aus IMM Proceedings, 295.2, (1990), pp. 27-37.Google Scholar
  16. 16.
    L. Pauling, L.O. Brockway and Z. Krist, Zeitschrift für Kristallographie-Crystalline Materials, 82.1-6, 188, (1932).Google Scholar
  17. 17.
    J.S. Nkoma and G. Ekosse, J. Phys. Condens. Matter 11.1, 121 (1999).Google Scholar
  18. 18.
    R.W.C. Wyckoff, Crystal Structures (New York: Wiley Publisher, 1961).Google Scholar
  19. 19.
    P. Villars and L.D. Calvert, Pearson’s Handbook of Crystallographic Data for Interm- etallic Phases, (American Society of Metals, 1985).Google Scholar
  20. 20.
    M. Lundström, J. Aromaa, O. Forsén, O. Hyvärinen, and M.H. Barker, Hydrometallurgy 77, 89 (2005).Google Scholar
  21. 21.
    I.K. Khabibullin, N.N. Garifyanov, and V.L. Matukhin, Russ. Phys. J. 51, 767 (2008).Google Scholar
  22. 22.
    T. Teranishi and K. Sato, Le J Phys Colloques 36, C3–149 (1975).Google Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.Department of PhysicsUniversity of KarachiKarachiPakistan

Personalised recommendations