Improvement of Mn1.56(Co1−xAlx)0.96Ni0.48O4 (0.1 ≤ x ≤ 0.4) Film Preparation and Assessment of Its Structure and Properties

  • Qian Wang
  • Jun Zhang
  • Wenwen KongEmail author


A series of Mn1.56(Co1−xAlx)0.96Ni0.48O4 (x = 0.1, 0.2, 0.3, and 0.4) films were prepared by the chemical solution deposition method and then post-heated at 150°C for 300 h. Scanning electron microscopy and x-ray diffraction revealed remarkable improvements in relative density and crystallinity in post-heated Mn1.56(Co1−xAlx)0.96Ni0.48O4 (x = 0.1, 0.2, 0.3, and 0.4) films. From x-ray photoelectron and Raman spectroscopy, it was found that the Mn3+/Mn4+ ratio decreases after post-heating, which leads to a decrease in Raman mode intensity. Furthermore, spectroscopic ellipsometry results show that both the refractive indexes and extinction coefficients of post-heated films are higher than those of annealed films in the visible range. However, the band gaps of all the films decreased significantly after the heating process. These investigations suggest that the post-heating treatment may be preferable for fabricating Mn1.56Co0.96Ni0.48O4 thin films for optical detection.


Structure optical properties post-heated films 



This work was supported by the National Key Research and Development Program of China (Grant No. 2017YFB0406405), the National Natural Science Foundation of China (Grant No. 61804178) and the Xinjiang Uygur Autonomous Region of China (No. 2017D01B51).


  1. 1.
    A. Feteira, J. Am. Ceram. Soc. 92, 967 (2009).CrossRefGoogle Scholar
  2. 2.
    W. Zhou, J. Wu, C. Ouyang, Q.Y. Gao, X.F. Xu, and Z.M. Huang, J. Appl. Phys. 115, 056601 (2014).Google Scholar
  3. 3.
    B. Lavina, G. Salviulo, and A. Della Giusta, Phys. Chem. Miner. 29, 10 (2002).CrossRefGoogle Scholar
  4. 4.
    F. Zhang, W. Zhou, C. Ouyang, J. Wu, Q.Y. Gao, and Z.M. Huang, AIP Adv. 5, 683 (2015).Google Scholar
  5. 5.
    M. Vakiv, O. Shpotyuk, O. Mrooz, and I. Hadzaman, J. Eur. Ceram. Soc. 21, 1783 (2001).CrossRefGoogle Scholar
  6. 6.
    C. Rath, S. Anand, R.P. Das, K.K. Sahu, S. Kulkarni, S. Date, and N.C. Mishra, J. Appl. Phys. 91, 2211 (2002).CrossRefGoogle Scholar
  7. 7.
    S. Jagtap, S. Gosavi, S. Rane, and D. Amalnerlar, Microelectron. Int. 26, 19 (2009).CrossRefGoogle Scholar
  8. 8.
    K. Park and I.H. Han, Mater. Sci. Eng. B 119, 55 (2005).CrossRefGoogle Scholar
  9. 9.
    Q. Shi, S. Bao, W. Ren, X.B. Zhang, J. Hu, N. Li, Q. Zhou, L. Wang, A.M. Chang, and L. Bian, Ceram. Int. 43, 5702 (2017).CrossRefGoogle Scholar
  10. 10.
    P. Castelan, B. Ai, A. Loubiere, A. Rousset, and R. Legros, J. Appl. Phys. 72, 4705 (1992).CrossRefGoogle Scholar
  11. 11.
    W.W. Kong, B. Gao, C.P. Jiang, and A.M. Chang, Appl. Mechan. Mater. 748, 11 (2015).CrossRefGoogle Scholar
  12. 12.
    L. He and Z.Y. Ling, Appl. Phys. Lett. 98, 242112 (2011).CrossRefGoogle Scholar
  13. 13.
    Y. Zhao, Y.A. Opata, W. Wu, and J.C. Grivel, Mater. Charact. 124, 58 (2017).CrossRefGoogle Scholar
  14. 14.
    K. Parvez, S. Yang, X. Feng, and K. Müllen, Synth. Met. 210, 123 (2015).CrossRefGoogle Scholar
  15. 15.
    R. Schmidt, A. Basu, A.W. Brinkman, Z. Klusek, and P.K. Datta, Appl. Phys. Lett. 86, 325 (2005).Google Scholar
  16. 16.
    C. Ma, W. Ren, L. Wang, L. Bian, J.B. Xu, and A.M. Chang, Mater. Lett. 153, 162 (2015).CrossRefGoogle Scholar
  17. 17.
    J. Töpfer, A. Feltz, D. Gräf, B. Hackl, L. Raupach, and P. Weissbrodt, Phys. Status Solidi A 134, 405 (2010).CrossRefGoogle Scholar
  18. 18.
    R. Lewandowska, M. Gaillet, G.L. Bourdon, C. Eypert, S. Morel, C. Naudin, and M. Stchakovsky, Surf. Interface Anal. 40, 588 (2008).CrossRefGoogle Scholar
  19. 19.
    C. Ma, H.G. Wang, P.J. Zhao, J.B. Xu, A.M. Chang, L. Wang, and L. Bian, Mater. Lett. 136, 225 (2014).CrossRefGoogle Scholar
  20. 20.
    P. Chandramohan, M.P. Srinivasan, S. Velmurugan, and S.V. Narasimhan, J. Solid State Chem. 184, 89 (2011).CrossRefGoogle Scholar
  21. 21.
    Y.Q. Gao, Z.M. Huang, Y. Hou, J. Wu, Y.J. Ge, and J.H. Chu, Appl. Phys. Lett. 94, 1114 (2009).Google Scholar
  22. 22.
    H.G. Wang, J.B. Xu, C. Ma, F.L. Xu, L. Wang, L. Bian, and A.M. Chang, J. Alloys Compd. 615, 526 (2014).CrossRefGoogle Scholar
  23. 23.
    Y. Hou, J.Q. Xue, Z.M. Huang, T.X. Li, Y.J. Ge, and J.H. Chu, Thin Solid Films 517, 901 (2008).CrossRefGoogle Scholar
  24. 24.
    P. Liu, P. Longo, A. Zaslavsky, and D. Pacifici, J. Appl. Phys. 119, 014304 (2016).CrossRefGoogle Scholar
  25. 25.
    Y. Feng, S. Lin, S. Huang, S. Shrestha, and G. Conibeer, J. Appl. Phys. 117, 125701 (2015).CrossRefGoogle Scholar
  26. 26.
    X.M. Li, H.W. Zhu, J.Q. Wei, K.L. Wang, E.Y. Xu, Z. Li, and D.H. Wu, Appl. Phys. A Mater. 97, 341 (2009).CrossRefGoogle Scholar
  27. 27.
    B.D. Viezbicke, S. Patel, B.E. Davis, and D.P. Birnie, Phys. Status Solidi B 252, 1700 (2015).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.CAS Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Key Laboratory of Electronic Information Materials and Devices, Xinjiang Technical Institute of Physics and ChemistryCASUrumqiChina
  2. 2.School of Physics Science and TechnologyXinjiang UniversityUrumqiChina

Personalised recommendations