Journal of Electronic Materials

, Volume 48, Issue 5, pp 2794–2800 | Cite as

Role of Electron Blocking Layer in Performance Improvement of Organic Diodes

  • E. Hleli
  • M. Radaoui
  • Z. Ben HamedEmail author
  • S. Romdhane
  • D. A. M. Egbe
  • H. Bouchriha


Charge-carrier mobilities in organic diodes based on an anthracene-containing poly(arylene-ethynylene)-alt-poly(p-phenylene-vinylene) generally known as AnE-PVstat, stacked with an electron blocking thin layer of NPB(N, N′-bis (1-naphythyl)-N, N-diphenyl-1,1′-biphenyl-4,4′-diamin) of various thicknesses are investigated through current density-voltage (J-V), capacitance-frequency (C-w), conductance-frequency (G-w) and impedance-frequency (Z-w) experiments in conventional structures of ITO/AnE-PVstat/NPB/Al. Analysis of J-V, C-w and G-w results show that current-density, capacitance and conductance of the active layer decrease with increasing NPB thickness and permit determination separately of a hole mobility of the polymer of the order of \( \sim10^{ - 4} \,{\hbox{cm}}^{2}\, {\hbox{V}}^{ - 1} \,{\hbox{s}}^{ - 1} \). This value is less than the global mobility (7 × 10−4 \( {\hbox{cm}}^{2} \,{\hbox{V}}^{ - 1} \,{\hbox{s}}^{ - 1} \)) obtained without the blocking layer, which probably includes electrons and holes mobilities and indicates that NPB absorbs the majority of electrons. Analysis of impedance spectroscopy results shows that the impedance (Z) and parallel capacitor (Cp) decrease and parallel resistance (Rp) increases with increasing NPB thickness layer. All these results clearly confirm the role of NPB as a blocking layer for the electrons.


Current-voltage (I-Vimpedance spectroscopy AnE-PVstat NPB electron blocking layer 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



  1. 1.
    N. Boutabba, A. Rihani, N. Boutabba, L. Hassine, S. Romdhane, and H. Bouchriha, Synth. Met. 145, 129 (2004).CrossRefGoogle Scholar
  2. 2.
    H. Hoppe, D.A.M. Egbe, D. Mühlbacher, and N.S. Sariciftci, Mater. Chem. 14, 3462 (2004).CrossRefGoogle Scholar
  3. 3.
    O. Ostroverkhova, Chem. Rev. 116, 13279 (2016).CrossRefGoogle Scholar
  4. 4.
    S. Lattante, Electronics 3, 132 (2014).CrossRefGoogle Scholar
  5. 5.
    S. Ishihara, H. Hase, T. Okachi, and H. Naito, Org. Electron. Phys. Mater. Appl. 12, 1364 (2011).Google Scholar
  6. 6.
    N. Tore, E.A. Parlak, T.A. Tumay, P. Kavak, Ş. Sarioğlan, S. Bozar, S. Günes, C. Ulbricht, and D.A.M. Egbe, J. Nanoparticle Res. 16, 1 (2014).CrossRefGoogle Scholar
  7. 7.
    A. Kösemen, N. Tore, E.A. Parlak, Z. Alpaslan Kösemen, C. Ulbricht, O. Usluer, D.A.M. Egbe, Y. Yerli, and S.E. San, Sol. Energy 99, 88 (2014).CrossRefGoogle Scholar
  8. 8.
    L.L. Chua, J. Zaumseil, J.F. Chang, E.C.W. Ou, P.K.H. Ho, H. Sirringhaus, and R.H. Friend, Nature 434, 194 (2005).CrossRefGoogle Scholar
  9. 9.
    S. Alam, P. Fischer, C. Kästner, C.R. Singh, U.S. Schubert, and H. Hoppe, High- J. Mater. Res. 33, 1860 (2018).CrossRefGoogle Scholar
  10. 10.
    F. Tinti, F.K. Sabir, M. Gazzano, S. Righi, C. Ulbricht, Ö. Usluer, V. Pokorna, V. Cimrova, T. Yohannes, D.A.M. Egbe, and N. Camaioni, RSC Adv. 3, 6972 (2013).CrossRefGoogle Scholar
  11. 11.
    M. Radaoui, E. Hleli, Z. Ben Hamed, A. Ben Fredj, H. Hrichi, S. Romdhane, D.A.M. Egbe, and H. Bouchriha, Mater. Sci. Semicond. Process. 30, 285 (2015).CrossRefGoogle Scholar
  12. 12.
    Y. Sun, G. Li, L. Wang, Z. Huai, R. Fan, S. Huang, G. Fu, and S. Yang, Sol. Energy Mater. Sol. Cells 182, 45 (2018).Google Scholar
  13. 13.
    E. Hleli, S. Alam, A. Saaidia, C. Kästner, S. Hoeppener, C. Ulbricht, S. Romdhane, A. Ben Fredj, D.A.M. Egbe, U.S. Schubert, H. Bouchriha, and H. Hoppe, Synth. Met. 243, 8 (2018).CrossRefGoogle Scholar
  14. 14.
    C. Kästner, D.A.M. Egbe, and H. Hoppe, J. Mater. Chem. A 3, 395 (2015).CrossRefGoogle Scholar
  15. 15.
    D.A.M. Egbe, B. Carbonnier, E. Birckner, and U.W. Grummt, Prog. Polym. Sci. 34, 1023 (2009).CrossRefGoogle Scholar
  16. 16.
    S.T. Zhang, Z.J. Wang, J.M. Zhao, Y.Q. Zhan, Y. Wu, Y.C. Zhou, X.M. Ding, and X.Y. Hou, Appl. Phys. Lett. 84, 2916 (2004).CrossRefGoogle Scholar
  17. 17.
    C. Weichsel, S. Reineke, B. Lüssem, and K. Leo, MRS Proc. 1402, mrsf11 (2012).CrossRefGoogle Scholar
  18. 18.
    J.K. Kim, S.H. Lee, and T. Noh, in Mol. Cryst. Liq. Cryst. (2006).Google Scholar
  19. 19.
    Z.-Y. Xia, J.-H. Su, W.-Y. Wong, L. Wang, K.-W. Cheah, H. Tian, and C.H. Chen, J. Mater. Chem. (2010).Google Scholar
  20. 20.
    N. Camaioni, F. Tinti, A. Degli Esposti, S. Righi, Ö. Usluer, S. Boudiba, and D.A.M. Egbe, Appl. Phys. Lett. 101, 1 (2012).CrossRefGoogle Scholar
  21. 21.
    T.B. Singh, N. Marjanović, G.J. Matt, S. Günes, N.S. Sariciftci, A. Montaigne Ramil, A. Andreev, H. Sitter, R. Schwödiauer, and S. Bauer, Org. Electron. 6, 105 (2005).CrossRefGoogle Scholar
  22. 22.
    D.A.M. Egbe, G. Adam, A. Pivrikas, A.M. Ramil, E. Birckner, V. Cimrova, H. Hoppe, and N.S. Sariciftci, J. Mater. Chem. 20, 9726 (2010).CrossRefGoogle Scholar
  23. 23.
    J. Dacuña and A. Salleo, Phys. Rev. B: Condens. Matter. Mater. Phys. 84, 1 (2011).CrossRefGoogle Scholar
  24. 24.
    Y. Nakayama, S. Machida, Y. Miyazaki, T. Nishi, Y. Noguchi, and H. Ishii, Org. Electron. Phys. Org. Electron. Phys. Mater. Appl. 13, 2850 (2012).Google Scholar
  25. 25.
    P. Mark and W. Helfrich, J. Appl. Phys. 33, 205 (1962).CrossRefGoogle Scholar
  26. 26.
    M. Bouzitoun, C. Dridi, R. Ben Chaabane, H. Ben Ouada, H. Gam, and M. Majdoub, Sci. Technol. Adv. Mater. 7, 772 (2006).CrossRefGoogle Scholar
  27. 27.
    F. Marai, S. Romdhane, L. Hassine, M. Majdoub, and H. Bouchriha, Synth. Met. 132, 117 (2003).CrossRefGoogle Scholar
  28. 28.
    R. Padma, B.P. Lakshmi, and V.R. Reddy, Superlattices Microstruct. 60, 358 (2013).CrossRefGoogle Scholar
  29. 29.
    F. Tinti, F.K. Sabir, M. Gazzano, S. Righi, Ö. Usluer, C. Ulbricht, T. Yohannes, D.A.M. Egbe, and N. Camaioni, Macromol. Chem. Phys. 215, 452 (2014).CrossRefGoogle Scholar
  30. 30.
    A. Rihani, N. Boutabba, L. Hassine, S. Romdhane, and H. Bouchriha, Synth. Met. 145, 129 (2004).CrossRefGoogle Scholar
  31. 31.
    C.C. Chen, B.C. Huang, M.S. Lin, Y.J. Lu, T.Y. Cho, C.H. Chang, K.C. Tien, S.H. Liu, T.H. Ke, and C.C. Wu, Org. Electron. Phys. Mater. Appl. 11, 1901 (2010).Google Scholar
  32. 32.
    A. Rouis, J. Davenas, I. Bonnamour, and H. BenOuada, Phys. B Condens. Matter. 474, 70 (2015).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  • E. Hleli
    • 1
  • M. Radaoui
    • 1
    • 2
  • Z. Ben Hamed
    • 1
    Email author
  • S. Romdhane
    • 1
    • 3
  • D. A. M. Egbe
    • 4
  • H. Bouchriha
    • 1
  1. 1.Advanced Materials and Quantum Phenomena, Faculty of Sciences of TunisUniversity Tunis El ManarTunisTunisia
  2. 2.Faculté of Sciences of GafsaGafsaTunisia
  3. 3.Faculty of Sciences of BizerteUniversity of CarthageBizerteTunisia
  4. 4.Institute of Polymeric Materials and TestingJohannes Kepler UniversityLinzAustria

Personalised recommendations