Metamaterial-Based Four-Band Electromagnetic Energy Harvesting at Commonly Used GSM and Wi-Fi Frequencies

  • Emrullah KarakayaEmail author
  • Fulya Bagci
  • A. Egemen Yilmaz
  • Baris Akaoglu


A metamaterial-based energy harvesting structure for harvesting 0.90 GHz, 1.80 GHz, 2.60 GHz GSM bands and a 5.80 GHz Wi-Fi frequency band is numerically and experimentally demonstrated. The metamaterial unit cell consists of four nested split-ring resonators (SRRs) interconnected on their split parts. Three resistors are used to harvest electromagnetic waves, which are sent to the structure with the electric field vector polarized in parallel to the gap of the SRRs. Under normal excitation, electromagnetic energy harvesting efficiencies are found to be 85.7%, 82.0%, 80.4% and 69.8% at 0.90 GHz, 1.80 GHz, 2.60 GHz and 5.80 GHz, respectively, by numerical analyses. Surface current distributions are utilized to gain insight into the relation between the harvesting frequencies and the structure. The effect of incidence angle upon harvesting efficiencies shows that the increase of absolute angle of incidence has different consequences for each harvesting band. The harvesting efficiency is increased to be as high as approximately 90% at 2.60 GHz and 5.80 GHz when the incidence angle is increased to 30°. The metamaterial sample is fabricated by conventional photolithography and the measured results in absorption performance are found to be in reasonable agreement with the numerical results. Moreover, it is demonstrated that the proposed metamaterial harvester structure has flexibility in terms of tailoring the harvesting frequencies and multi-band harvesting with more than four bands.


Metamaterial absorber electromagnetic energy harvesting harvesting efficiency multi-band 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work is supported by the Scientific and Technological Research Council of Turkey (TUBITAK) under Grant No. 116E188 and by Scientific Research Projects of Ankara University (BAP) under Grant Nos. 16B0443005 and 17B0443006. We also thank to Dr. Sultan Can and Yasemin Demirhan for helping in preliminary measurement and Ansys HFSS calculations, respectively.


  1. 1.
    V.G. Veselago, Sov. Phys. Uspekhi 10, 509 (1968).CrossRefGoogle Scholar
  2. 2.
    D.R. Smith, W.J. Padilla, D.C. Vier, S.C. Nemat-Nasser, and S. Schultz, Phys. Rev. Lett. 84, 4184 (2000).CrossRefGoogle Scholar
  3. 3.
    T.J. Cui, D.R. Smith, and R. Liu, Metamaterials: Theory, Design, and Applications (New York: Springer, 2010), pp. 4–5.CrossRefGoogle Scholar
  4. 4.
    C.M. Watts, X. Liu, and W.J. Padilla, Adv. Mater. 24, OP98 (2012).Google Scholar
  5. 5.
    S. Zeng, D. Baillargeat, H.-P. Ho, and K.T. Yong, Chem. Soc. Rev. 43, 3426 (2014).CrossRefGoogle Scholar
  6. 6.
    R.O. Ouedraogo, E.J. Rothwell, A.R. Diaz, K. Fuchi, and A. Temme, IEEE Trans. Antennas Propag. 60, 2175 (2012).CrossRefGoogle Scholar
  7. 7.
    T.S. Almoneef and O.M. Ramahi, Prog. Electromagn. Res. 146, 109 (2014).CrossRefGoogle Scholar
  8. 8.
    T.S. Almoneef and O.M. Ramahi, Appl. Phys. Lett. 106, 153902 (2015).CrossRefGoogle Scholar
  9. 9.
    B. Alavikia, T.S. Almoneef, and O.M. Ramahi, Appl. Phys. Lett. 107, 243902 (2015).CrossRefGoogle Scholar
  10. 10.
    B. Alavikia, T.S. Almoneef, and O.M. Ramahi, Appl. Phys. Lett. 104, 163903 (2014).CrossRefGoogle Scholar
  11. 11.
    B. Alavikia, T.S. Almoneef, and O.M. Ramahi, Appl. Phys. Lett. 107, 033902 (2015).CrossRefGoogle Scholar
  12. 12.
    M.E. Badawe and O.M. Ramahi, Prog. Electromagn. Res. 161, 35 (2018).CrossRefGoogle Scholar
  13. 13.
    S. Shang, S. Yang, M. Shan, J. Liu, and H. Cao, AIP Adv. 7, 105204 (2017).CrossRefGoogle Scholar
  14. 14.
    H.-T. Zhong, X.-X. Yang, X.-T. Song, Z.-Y. Guo, and F. Yu, Appl. Phys. Lett. 111, 213902 (2017).CrossRefGoogle Scholar
  15. 15.
    A.M. Hawkes, A.R. Katko, and S.A. Cummer, Appl. Phys. Lett. 103, 163901 (2013).CrossRefGoogle Scholar
  16. 16.
    M.E. Badawe, T.S. Almoneef, and O.M. Ramahi, AIP Adv. 7, 035112 (2017).CrossRefGoogle Scholar
  17. 17.
    T.S. Almoneef, F. Erkmen, and O.M. Ramahi, Sci. Rep. 7, 14656 (2017).CrossRefGoogle Scholar
  18. 18.
    X. Duan, X. Chen, and L. Zhou, AIP Adv. 6, 125020 (2016).CrossRefGoogle Scholar
  19. 19.
    M. Bakir, M. Karaaslan, O. Altintas, M. Bagmanci, V. Akdogan, and F. Temurtas, Int. J. Microw. Wirel. Technol. 10, 67 (2018).CrossRefGoogle Scholar
  20. 20.
    B. Ghaderi, V. Nayyeri, M. Soleimani, and O.M. Ramahi, Sci. Rep. 8, 13227 (2018).CrossRefGoogle Scholar
  21. 21.
    S.D. Assimonis, T. Kollatou, D. Tsiamitros, D. Stimoniaris, T. Samaras, and J. N. Sahalo, in 9th International Conference on Electrical and Electronics Engineering (ELECO), pp. 320–323 (2015).Google Scholar
  22. 22.
    H.-T. Zhong, X.-X. Yang, C. Tan, and K. Yu, Appl. Phys. Lett. 109, 253904 (2016).CrossRefGoogle Scholar
  23. 23.
    X. Zhang, H. Liu, and L. Li, Appl. Phys. Lett. 111, 071902 (2017).CrossRefGoogle Scholar
  24. 24.
    CST Microwave Studio (2018).
  25. 25.
  26. 26.
    G.T. Oumbe Tekam, V. Ginis, J. Danckaert, and P. Tassin, Appl. Phys. Lett. 110, 083901 (2017).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.Department of Physics Engineering, Faculty of EngineeringAnkara UniversityBesevler, AnkaraTurkey
  2. 2.Department of Electrical and Electronics Engineering, Faculty of EngineeringAnkara UniversityGolbasi, AnkaraTurkey

Personalised recommendations