Advertisement

\({\hbox {LDA}}+{\hbox {U}}\) Calculation of Electronic and Thermoelectric Properties of Doped Tetrahedrite \({\hbox {Cu}}_{12}{\hbox {Sb}}_{4}{\hbox {S}}_{13}\)

  • K. KnížekEmail author
  • P. Levinský
  • J. Hejtmánek
Topical Collection: International Conference on Thermoelectrics 2018
  • 24 Downloads
Part of the following topical collections:
  1. International Conference on Thermoelectrics 2018
  2. International Conference on Thermoelectrics 2018

Abstract

Tetrahedrite-based thermoelectric materials have received much attention in recent years due to their good thermoelectric performance and earth-abundance. The parent compound \({\hbox {Cu}}_{12}{\hbox {Sb}}_{4}{\hbox {S}}_{13}\) exhibits a high power factor and low lattice thermal conductivity. Further enhancement of the thermoelectric figure of merit ZT is expected in substituted compounds, primarily at the Cu site \({\hbox {Cu}}_{12-x}{\hbox {M}}_{x}{\hbox {Sb}}_{4}{\hbox {S}}_{13}\). In this work we have studied the impact of substitution effects on thermoelectric properties using density-functional theory electronic structure calculations in combination with calculation of electrical transport properties by the BoltzTrap program.

Keywords

Tetrahedrites thermoelectric DFT BoltzTrap 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

This work was supported by the Project No. 18-12761S of the Czech Science Foundation. Access to computing and storage facilities owned by parties and projects contributing to the National Grid Infrastructure MetaCentrum provided under the programme ‘‘Projects of Large Research, Development, and Innovations Infrastructures’’ (CESNET LM2015042), is greatly appreciated.

References

  1. 1.
    X. Lu, D.T. Morelli, Y. Xia, F. Zhou, V. Ozolins, H. Chi, X.Y. Zhou, and C. Uher, Adv. Energy Mater. 3, 342 (2013).CrossRefGoogle Scholar
  2. 2.
    R. Chetty, A. Bali, and R.C. Mallik, J. Mater. Chem. C 3, 12364 (2015).CrossRefGoogle Scholar
  3. 3.
    K. Suekuni, K. Tsuruta, T. Ariga, and M. Koyano, Appl. Phys. Express 5, 51201 (2012).CrossRefGoogle Scholar
  4. 4.
    K. Suekuni, K. Tsuruta, M. Kunii, H. Nishiate, E. Nishibori, S. Maki, M. Ohta, A. Yamamoto, and M. Koyano, J. Appl. Phys. 113, 43712 (2013).CrossRefGoogle Scholar
  5. 5.
    J. Heo, G. Laurita, S. Muir, M.A. Subramanian, and D.A. Keszler, Chem. Mater. 26, 2047 (2014).CrossRefGoogle Scholar
  6. 6.
    K. Suekuni, Y. Tomizawa, T. Ozaki, and M. Koyano, J. Appl. Phys. 115, 143702 (2014).CrossRefGoogle Scholar
  7. 7.
    X. Lu, D.T. Morelli, Y. Xia, and V. Ozolins, Chem. Mater. 27, 408 (2015).CrossRefGoogle Scholar
  8. 8.
    R. Chetty, D.S.P. Kumar, G. Rogl, P. Rogl, E. Bauer, H. Michor, S. Suwas, S. Puchegger, G. Giester, and R.C. Mallik, Phys. Chem. Chem. Phys. 17, 1716 (2015).CrossRefGoogle Scholar
  9. 9.
    R. Chetty, A. Bali, M.H. Naik, G. Rogl, P. Rogl, M. Jain, S. Suwas, and R.C. Mallik, Acta Mater. 100, 266 (2015).CrossRefGoogle Scholar
  10. 10.
    S. Tippireddy, R. Chetty, M.H. Naik, M. Jain, K. Chattopadhyay, and R.C. Mallik, J. Phys. Chem. C 122, 8735 (2018).CrossRefGoogle Scholar
  11. 11.
    D.S.P. Kumar, R. Chetty, P. Rogl, G. Rogl, E. Bauer, P. Malar, and R.C. Mallik, Intermetallics 78, 21 (2016).CrossRefGoogle Scholar
  12. 12.
    Y. Kosaka, K. Suekuni, K. Hashikuni, Y. Bouyrie, M. Ohta, and T. Takabatake, Phys. Chem. Chem. Phys. 19, 8874 (2017).CrossRefGoogle Scholar
  13. 13.
    P. Levinský, C. Candolfi, A. Dauscher, B. Lenoir, and J. Hejtmánek, J. Electron. Mater. (accepted).Google Scholar
  14. 14.
    P. Blaha, K. Schwarz, G. K. H. Madsen, D. Kvasnicka, and J. Luitz, WIEN2k, An Augmented Plane Wave + Local Orbitals Program for Calculating Crystal Properties. Technische Universität, Wien (2014). www.wien2k.at.
  15. 15.
    G.K.H. Madsen and D.J. Singh, Comput. Phys. Commun. 175, 67 (2006).CrossRefGoogle Scholar
  16. 16.
    Y. Bouyrie, C. Candolfi, V. Ohorodniichuk, B. Malaman, A. Dauscher, J. Tobola, and B. Lenoir, J. Mater. Chem. C 3, 10476 (2015).CrossRefGoogle Scholar
  17. 17.
    X. Lu, W. Yao, G.W. Wang, X.Y. Zhou, D. Morelli, Y.S. Zhang, H. Chi, S. Hui, and C. Uher, J. Mater. Chem. A 4, 17096 (2016).CrossRefGoogle Scholar
  18. 18.
    Y.O. Ciftci and S.D. Mahanti, J. Appl. Phys. 119, 145703 (2016).CrossRefGoogle Scholar
  19. 19.
    M. Miyata, T. Ozaki, T. Takeuchi, S. Nishino, M. Inukai, and M. Koyano, J. Electron. Mater. 47, 3254 (2018).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.Institute of Physics of the CASPrague 6Czech Republic

Personalised recommendations