Effects of Cobalt Substitution on Crystal Structure and Thermoelectric Properties of Melt-Grown Higher Manganese Silicides

  • H. NagaiEmail author
  • H. Hamada
  • K. Hayashi
  • Y. Miyazaki
Topical Collection: International Conference on Thermoelectrics 2018
Part of the following topical collections:
  1. International Conference on Thermoelectrics 2018


To improve the thermoelectric (TE) properties of melt-grown higher manganese silicides MnSiγ, dissipation of MnSi precipitates that deteriorate the electrical conductivity is required. We have investigated the effects of light cobalt (Co) substitution on TE properties and MnSi precipitates of MnSiγ. A 4% substitution of Mn with Co is an effective approach to eliminate MnSi precipitates from melt-grown MnSiγ, which is confirmed by powder x-ray diffraction and energy-dispersive spectroscopy measurements. Furthermore, this light Co substitution leads to increase of the hole carrier concentration, resulting in a great increase in the electrical conductivity from 24 × 103 S/m to 54 × 103 S/m at 700 K. The resulting power factor exhibits 1.9 × 10−3 W/mK2 around 700 K. Moreover, the lattice thermal conductivity is greatly decreased by partial Co substitution compared with that of Co-free MnSiγ. Consequently, the dimensionless figure-of-merit zT of (Mn1−xCox)Siγ samples increases from 0.27 for x = 0 to 0.50 for x = 0.04 in the vicinity of 800 K.


Higher manganese silicides valence electron counts thermoelectric properties MnSi precipitate cobalt substitution 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



  1. 1.
    Y. Kikuchi, T. Nakajo, K. Hayashi, and Y. Miyazaki, J. Alloys Compd. 616, 263 (2014).CrossRefGoogle Scholar
  2. 2.
    Z. Du, T. Zhu, Y. Chen, J. He, H. Gao, G. Jiang, T.M. Tritt, and X. Zhao, J. Mater. Chem. 22, 6838 (2012).CrossRefGoogle Scholar
  3. 3.
    T. Sakamoto, T. Iida, A. Matsumoto, Y. Honda, T. Nemoto, J. Sato, T. Nakajima, H. Taguchi, and Y. Takanashi, J. Electron. Mater. 39, 1708 (2010).CrossRefGoogle Scholar
  4. 4.
    M. Kubouchi, K. Hayashi, and Y. Miyazaki, Scr. Mater. 123, 59 (2016).CrossRefGoogle Scholar
  5. 5.
    A. Heinrich, H. Griessmann, G. Behr, K. Ivanenko, J. Schumann, and H. Vinzelberg, Thin Solid Films 381, 287 (2001).CrossRefGoogle Scholar
  6. 6.
    J. Tani and H. Kido, J. Appl. Phys. 84, 1408 (1998).CrossRefGoogle Scholar
  7. 7.
    S.W. Kim, M.K. Cho, Y. Mishima, and D.C. Choi, Intermetallics 11, 399 (2003).CrossRefGoogle Scholar
  8. 8.
    U. Gottlieb, A. Sulpice, B. Lambert-Andron, and O. Laborde, J. Alloys Compd. 361, 13 (2003).CrossRefGoogle Scholar
  9. 9.
    O. Schwomma, H. Nowotny, and A. Wittmann, Monatsh. Chem. 94, 681 (1963).CrossRefGoogle Scholar
  10. 10.
    O. Schwomma, A. Preisinger, H. Nowotny, and A. Wittmann, Monatsh. Chem. 95, 1527 (1964).CrossRefGoogle Scholar
  11. 11.
    H.W. Knott, M.H. Mueller, and L. Heaton, Acta Crystallogr. 23, 549 (1967).CrossRefGoogle Scholar
  12. 12.
    G. Zwilling and H. Nowotny, Monatsh. Chem. 104, 668 (1973).CrossRefGoogle Scholar
  13. 13.
    Y. Miyazaki, D. Igarashi, K. Hayashi, T. Kajitani, and K. Yubuta, Phys. Rev. B 78, 214104 (2008).CrossRefGoogle Scholar
  14. 14.
    M.I. Fedorov and V.K. Zaitsev, Thermoelectrics Handbook, Chap. 31, ed. D.M. Rowe (Boca Raton: CRC Press, 2006), p. 3.Google Scholar
  15. 15.
    I. Aoyama, M.I. Fedorov, V.K. Zaitsev, F.Y. Solomkin, I.S. Eremin, A.Y. Samunin, M. Mukoujima, S. Sano, and T. Tsuji, Jpn. J. Appl. Phys. 44, 8562 (2005).CrossRefGoogle Scholar
  16. 16.
    A.J. Zhou, T.J. Zhu, X.B. Zhao, S.H. Yang, T. Dasgupta, C. Stiewe, R. Hassdorf, and E. Mueller, J. Electron. Mater. 39, 2002 (2010).CrossRefGoogle Scholar
  17. 17.
    Y. Miyazaki, Y. Saito, K. Hayashi, K. Yubuta, and T. Kajitani, Adv. Sci. Tech. 74, 22 (2010).CrossRefGoogle Scholar
  18. 18.
    X. Chen, J. Zhou, J.B. Goodenough, and L. Shi, J. Mater. Chem. C 3, 10500 (2015).CrossRefGoogle Scholar
  19. 19.
    A. Yamamoto, S. Ghodke, H. Miyazaki, M. Inukai, Y. Nishino, M. Matsunami, and T. Takeuchi, Jpn. J. Appl. Phys. 55, 020301 (2016).CrossRefGoogle Scholar
  20. 20.
    Y. Miyazaki, H. Hamada, K. Hayashi, and K. Yubuta, J. Electron. Mater. 46, 2705 (2017).CrossRefGoogle Scholar
  21. 21.
    Y. Miyazaki, H. Hamada, H. Nagai, and K. Hayashi, Materials 11, 926 (2018).CrossRefGoogle Scholar
  22. 22.
    D.Y.N. Truong, H. Kleinke, and F. Gascoin, Intermetallics 66, 127 (2015).CrossRefGoogle Scholar
  23. 23.
    X. Chen, L. Shi, J. Zhou, and J.B. Goodenough, J. Alloys Compd. 641, 30 (2015).CrossRefGoogle Scholar
  24. 24.
    T. Kojima, I. Nishida, and T. Sakata, J. Cryst. Growth 47, 589 (1979).CrossRefGoogle Scholar
  25. 25.
    V. Petricek, M. Dusek, and L. Palatinus, Z. Kristallogr. 229, 345 (2014).Google Scholar
  26. 26.
    J.C. Slater, J. Chem. Phys. 41, 3199 (1964).CrossRefGoogle Scholar
  27. 27.
    The electrical conductivity of (Mn0.95Co0.05)Siγ from Ref. [17] shown in Fig. 4(a) is 100 times higher than the original value in Ref. [17] because the unit of S/m in Fig. 3 in the reference appeared to be mistaken for S/cm.Google Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.Department of Applied Physics, Graduate School of EngineeringTohoku UniversitySendaiJapan

Personalised recommendations