Advertisement

Effect of Composition on Thermoelectric Properties of As-Cast Materials: The Cu12−xCoxSb4S13−ySey Case

  • Tiago Kalil Cortinhas Alves
  • Gonçalo Domingues
  • Elsa Branco Lopes
  • António Pereira GonçalvesEmail author
Topical Collection: International Conference on Thermoelectrics 2018
  • 18 Downloads
Part of the following topical collections:
  1. International Conference on Thermoelectrics 2018
  2. International Conference on Thermoelectrics 2018

Abstract

Samples with Cu12−xCoxSb4S13−ySey (0 ≤ x ≤ 2, 0 ≤ y ≤ 1) nominal compositions were prepared by melting the elements under vacuum, followed by slow cooling. The phases formed in this process were identified and characterized by powder x-ray diffraction and scanning electron microscopy observations, complemented with energy-dispersive spectroscopy. All samples have tetrahedrite as the major phase (> 78 vol.%). However, minority phases like skinnerite and chalcostibite are usually also observed, the number and volume of them increasing with the increase of cobalt content. Measurements of electrical resistivity and Seebeck coefficient showed that these materials can present large power factors, with the Cu11.5Co0.5Sb4S12Se sample having a room temperature value higher than 200 μW K−2 m−1.

Keywords

Tetrahedrites as-cast materials thermoelectric materials power factor 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

This work was partially supported by Fundação para a Ciência e Tecnologia (FCT), Portugal, through the contracts UID/Multi/04349/2013 and POCI-01-0145-FEDER-016674, and by the Project THERMOSS (M-ERA-NET2/0010/2016).

References

  1. 1.
    A.F. Ioffe, Energetic Basis of Thermoelectrical Cells from Semiconductors (Moscow: Academy of Sciences of the USSR, 1950) (in Russian).Google Scholar
  2. 2.
    K. Suekuni, K. Tsuruta, T. Ariga, and M. Koyano, Appl. Phys. Express 5, 051201 (2012).CrossRefGoogle Scholar
  3. 3.
    X. Lu, D.T. Morelli, Y. Xia, F. Zhou, V. Ozolins, H. Chi, X. Zhou, and C. Uher, Adv. Energy Mater. 3, 342 (2013).CrossRefGoogle Scholar
  4. 4.
    R. Chetty, A. Bali, M.H. Naik, G. Rogl, P. Rogl, M. Jain, S. Suwas, and R.C. Mallik, Acta Mater. 100, 266 (2015).CrossRefGoogle Scholar
  5. 5.
    R. Chetty, P. Kumar, D.S.G. Rogl, P. Rogl, E. Bauer, H. Michor, S. Suwas, S. Puchegger, G. Giesterg, and R.C. Mallik, Phys. Chem. Chem. Phys. 17, 1716 (2015).CrossRefGoogle Scholar
  6. 6.
    X. Lu, D.T. Morelli, Y. Xia, and V. Ozolins, Chem. Mater. 27, 408 (2015).CrossRefGoogle Scholar
  7. 7.
    D.S.P. Kumar, R. Chetty, P. Rogl, G. Rogl, E. Bauer, P. Malar, and R.C. Mallik, Intermetallics 78, 21 (2016).CrossRefGoogle Scholar
  8. 8.
    T. Barbier, S. Rollin-Martinet, P. Lemoine, F. Gascoin, A. Kaltzoglou, P. Vaqueiro, A.V. Powell, and E. Guilmeau, J. Am. Ceram. Soc. 99, 51 (2016).CrossRefGoogle Scholar
  9. 9.
    Y. Bouyrie, S. Sassi, C. Candolfi, J.-B. Vaney, A. Dauscher, and B. Lenoir, Dalton Trans. 45, 7294 (2016).CrossRefGoogle Scholar
  10. 10.
    S. Battiston, C. Fanciulli, S. Fiameni, A. Famengo, S. Fasolin, and M. Fabrizio, J. Alloys Compd. 702, 75 (2017).CrossRefGoogle Scholar
  11. 11.
    S. Tippireddy, R. Chetty, M.H. Naik, M. Jain, K. Chattopadhyay, and R.C. Mallik, J. Phys. Chem. C 122, 8735 (2018).CrossRefGoogle Scholar
  12. 12.
    F.-H. Sun, J. Dong, S. Dey, Asfandiyar, C.-F. Wu, Y. Pan, H. Tang, and J.-F. Li, Sci. China Mater. 61, 1209 (2018).CrossRefGoogle Scholar
  13. 13.
    K. Suekuni, K. Tsuruta, M. Kunii, H. Nishiate, E. Nishibori, S. Maki, M. Ohta, A. Yamamoto, and M. Koyano, J. Appl. Phys. 113, 043712 (2013).CrossRefGoogle Scholar
  14. 14.
    R. Chetty, A. Bali, and R.C. Mallik, J. Mater. Chem. C 3, 12364 (2015).CrossRefGoogle Scholar
  15. 15.
    L. Xu and D.T. Morelli, Tetrahedrites: earth-abundant thermoelectric materials with intrinsically low thermal conductivity. Materials Aspect of Thermoelectricity, ed. C. Uher (Boca Raton: Taylor & Francis Group, 2016), p. 473.Google Scholar
  16. 16.
    C. Candolfi, Y. Bouyrie, S. Sassi, A. Dauscher, and B. Lenoir, Tetrahedrites: prospective novel thermoelectric materials. Thermoelectrics for Power Generation: A Look at Trends in the Technology, ed. S. Skipidarov and M. Nikitin (Rijeka: IntechOpen, 2016), p. 71.Google Scholar
  17. 17.
    D.J. James, X. Lu, D.T. Morelli, S.L. Brock, and A.C.S. Appl, Mater. Interfaces 7, 23623 (2015).CrossRefGoogle Scholar
  18. 18.
    A.P. Gonçalves, E.B. Lopes, J. Monnier, J. Bourgon, J.B. Vaney, A. Piarristeguy, A. Pradel, B. Lenoir, G. Delaizir, M.F.C. Pereira, E. Alleno, and C. Godart, J. Alloys Compd. 664, 209 (2016).CrossRefGoogle Scholar
  19. 19.
    A.P. Gonçalves, E.B. Lopes, B. Villeroy, J. Monnier, C. Godart, and B. Lenoir, RSC Adv. 6, 102359 (2016).CrossRefGoogle Scholar
  20. 20.
    G. Nolze and W. Kraus, Powder Cell for Windows (Version 2.3) (Berlin: Federal Institute for Materials Research and Testing, 1999).Google Scholar
  21. 21.
    T.J.B. Holland and S.A.T. Redfern, Mineral. Mag. 61, 65e77 (1997).CrossRefGoogle Scholar
  22. 22.
    J. Rodriguez-Carvajal, FULLPROF: a program for Rietveld refinement and pattern matching analyses, Abstracts of the Satellite Meeting on Powder Diffraction of the XVth Congress of the International Union of Crystallography, Toulouse, France, 1990, p. 127Google Scholar
  23. 23.
    M. Almeida, S. Oostra, and L. Alcacer, Phys. Rev. B 30, 2839 (1984).CrossRefGoogle Scholar
  24. 24.
    R.P. Huebener, Phys. Rev. 135, A1281 (1964).CrossRefGoogle Scholar
  25. 25.
    X. Lu, D.T. Morelli, Y. Wang, W. Lai, Y. Xia, and V. Ozolins, Chem. Mater. 28, 1781 (2016).CrossRefGoogle Scholar
  26. 26.
    T. Barbier, P. Lemoine, S. Gascoin, O.I. Lebedev, A. Kaltzoglou, P. Vaqueiro, A.V. Powell, R.I. Smith, and E. Guilmeau, J. Alloys Compd. 634, 253 (2015).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.C2TN, DECN, Instituto Superior TécnicoUniversidade de LisboaBobadela LRSPortugal
  2. 2.Institut für Mineralogie, Kristallographie und MaterialwissenschaftUniversität LeipzigLeipzigGermany

Personalised recommendations