Defects in Carbon Nanotubes and their Impact on the Electronic Transport Properties

  • Laith A. AlgharagholyEmail author


Synthesis of atomically pure carbon nanotubes (CNT) is difficult. Often, defects form in the structures consisting of carbon rings of non-uniform size and shape. Employing density functional theory combined with a Greens function scattering approach; we investigate the electronic properties of defective CNTs. We use the sculpturene method to form CNTs with a range of defect types, consisting of four-, five-, seven-, eight-, and ten-atom rings. We find that these defects have a non-trivial effect on the transport, often leading to decreased conductance, but also effecting the band-gap (Eg). We also plot the local density of states around the Fermi energy for a range of systems and generally find that higher levels of disorder cause a greater degree of localisation, which helps to explain the electronic properties.


Carbon nanotubes nanoribbons defects transport electronic properties 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work is supported by the Iraqi Ministry of Higher Education and Scientific Research/Department of Physics/College of Science/University of Sumer and Lancaster University by allowing us use of the HEC ‘High End Computing’.


  1. 1.
    M.S. Dresselhaus, G. Dresselhaus, and P.C. Eklund, Science of Fullerenes and Carbon Nanotubes: Their Properties and Applications (Amsterdam: Elsevier, 1996).Google Scholar
  2. 2.
    M.S. Dresselhaus and P. Avouris, Carbon Nanotubes (New York: Springer, 2001), p. 1.CrossRefGoogle Scholar
  3. 3.
    Y. Lan, Y. Wang, and Z. Ren, Adv. Phys. 60, 553 (2011).CrossRefGoogle Scholar
  4. 4.
    T. Ebbesen and P. Ajayan, Nature 358, 220 (1992).CrossRefGoogle Scholar
  5. 5.
    A. Thess, R. Lee, P. Nikolaev, H. Dai, P. Petit, J. Robert, C. Xu, Y.H. Lee, S.G. Kim, and A.G. Rinzler, Sci. AAAS Wkly. Pap. Ed. 273, 483 (1996).Google Scholar
  6. 6.
    W. Li, S. Xie, L. Qian, and B. Chang, Science 274, 1701 (1996).CrossRefGoogle Scholar
  7. 7.
    D. Yu and F. Liu, Nano Lett. 7, 3046 (2007).CrossRefGoogle Scholar
  8. 8.
    C. Journet, W. Maser, P. Bernier, A. Loiseau, M.L. de La Chapelle, S. Lefrant, P. Deniard, R. Lee, and J. Fischer, Nature 388, 756 (1997).CrossRefGoogle Scholar
  9. 9.
    E.T. Thostenson, Z. Ren, and T.-W. Chou, Compos. Sci. Technol. 61, 1899 (2001).CrossRefGoogle Scholar
  10. 10.
    Y.S. Park, K.S. Kim, H.J. Jeong, W.S. Kim, J.M. Moon, K.H. An, D.J. Bae, Y.S. Lee, G.-S. Park, and Y.H. Lee, Synth. Met. 126, 245 (2002).CrossRefGoogle Scholar
  11. 11.
    B. Hornbostel, M. Haluska, J. Cech, U. Dettlaff, and S. Roth, Carbon Nanotubes (New York: Springer, 2006), p. 1.CrossRefGoogle Scholar
  12. 12.
    S. Arepalli, J. Nanosci. Nanotechnol. 4, 317 (2004).CrossRefGoogle Scholar
  13. 13.
    T. Kuo, C. Chi, and I. Lin, Jpn. J. Appl. Phys. 40, 7147 (2001).CrossRefGoogle Scholar
  14. 14.
    S. Bhaviripudi, E. Mile, S.A. Steiner, A.T. Zare, M.S. Dresselhaus, A.M. Belcher, and J. Kong, J. Am. Chem. Soc. 129, 1516 (2007).CrossRefGoogle Scholar
  15. 15.
    Y. Chen and J. Zhang, Acc. Chem. Res. 47, 2273 (2014).CrossRefGoogle Scholar
  16. 16.
    T.T. Cao, T.T.T. Ngo, X.T. Than, B.T. Nguyen, and N.M. Phan, Adv. Nat. Sci.: Nanosci. Nanotechnol. 2, 035007 (2011).Google Scholar
  17. 17.
    J. Qiu, Y. An, Z. Zhao, Y. Li, and Y. Zhou, Fuel Process. Technol. 85, 913 (2004).CrossRefGoogle Scholar
  18. 18.
    M.Y. Han, B. Özyilmaz, Y. Zhang, and P. Kim, Phys. Rev. Lett. 98, 206805 (2007).CrossRefGoogle Scholar
  19. 19.
    Z. Chen, Y.-M. Lin, M.J. Rooks, and P. Avouris, Phys. E 40, 228 (2007).CrossRefGoogle Scholar
  20. 20.
    L. Tapasztó, G. Dobrik, P. Lambin, and L.P. Biró, Nat. Nanotechnol. 3, 397 (2008).CrossRefGoogle Scholar
  21. 21.
    S.S. Datta, D.R. Strachan, S.M. Khamis, and A.C. Johnson, Nano Lett. 8, 1912 (2008).CrossRefGoogle Scholar
  22. 22.
    L. Ci, Z. Xu, L. Wang, W. Gao, F. Ding, K.F. Kelly, B.I. Yakobson, and P.M. Ajayan, Nano Res. 1, 116 (2008).CrossRefGoogle Scholar
  23. 23.
    L.C. Campos, V.R. Manfrinato, J.D. Sanchez-Yamagishi, J. Kong, and P. Jarillo-Herrero, Nano Lett. 9, 2600 (2009).CrossRefGoogle Scholar
  24. 24.
    J. Campos-Delgado, J.M. Romo-Herrera, X. Jia, D.A. Cullen, H. Muramatsu, Y.A. Kim, T. Hayashi, Z. Ren, D.J. Smith, and Y. Okuno, Nano Lett. 8, 2773 (2008).CrossRefGoogle Scholar
  25. 25.
    Z.-S. Wu, W. Ren, L. Gao, B. Liu, J. Zhao, and H.-M. Cheng, Nano Res. 3, 16 (2010).CrossRefGoogle Scholar
  26. 26.
    X. Li, X. Wang, L. Zhang, S. Lee, and H. Dai, Science 319, 1229 (2008).CrossRefGoogle Scholar
  27. 27.
    J. Cai, P. Ruffieux, R. Jaafar, M. Bieri, T. Braun, S. Blankenburg, M. Muoth, A.P. Seitsonen, M. Saleh, and X. Feng, Nature 466, 470 (2010).CrossRefGoogle Scholar
  28. 28.
    L. Algharagholy, S.W. Bailey, T. Pope, and C.J. Lambert, Phys. Rev. B 86, 075427 (2012).CrossRefGoogle Scholar
  29. 29.
    H. Sadeghi, L. Algaragholy, T. Pope, S. Bailey, D. Visontai, D. Manrique, J. Ferrer, V. Garcia-Suarez, S. Sangtarash, and C.J. Lambert, J. Phys. Chem. B 118, 6908 (2014).CrossRefGoogle Scholar
  30. 30.
    L. Algharagholy, T. Pope, S.W. Bailey, and C.J. Lambert, New J. Phys. 16, 013060 (2014).CrossRefGoogle Scholar
  31. 31.
    L.A. Algharagholy, Q. Al-Galiby, H.A. Marhoon, H. Sadeghi, H.M. Abduljalil, and C.J. Lambert (2015). arXiv preprint arXiv:1510.00948
  32. 32.
    L.A. Algharagholy, Q. Al-Galiby, H.A. Marhoon, H. Sadeghi, H.M. Abduljalil, and C.J. Lambert, Nanotechnology 26, 475401 (2015).CrossRefGoogle Scholar
  33. 33.
    L. Chico, L.X. Benedict, S.G. Louie, and M.L. Cohen, Phys. Rev. B 54, 2600 (1996).CrossRefGoogle Scholar
  34. 34.
    A.R. Rocha, J. Padilha, A. Fazzio, and A.J. da Silva, Phys. Rev. B 77, 153406 (2008).CrossRefGoogle Scholar
  35. 35.
    J.-Y. Park, Appl. Phys. Lett. 90, 023112 (2007).CrossRefGoogle Scholar
  36. 36.
    Y.-W. Son, M.L. Cohen, and S.G. Louie, Phys. Rev. Lett. 97, 216803 (2006).CrossRefGoogle Scholar
  37. 37.
    B. Biel, F. Garcia-Vidal, A. Rubio, and F. Flores, Phys. Rev. Lett. 95, 266801 (2005).CrossRefGoogle Scholar
  38. 38.
    M. Bockrath, W. Liang, D. Bozovic, J.H. Hafner, C.M. Lieber, M. Tinkham, and H. Park, Science 291, 283 (2001).CrossRefGoogle Scholar
  39. 39.
    H.J. Choi, J. Ihm, S.G. Louie, and M.L. Cohen, Phys. Rev. Lett. 84, 2917 (2000).CrossRefGoogle Scholar
  40. 40.
    J.-C. Charlier, T. Ebbesen, and P. Lambin, Phys. Rev. B 53, 11108 (1996).CrossRefGoogle Scholar
  41. 41.
    S.A. Reyes, A. Struck, and S. Eggert, Phys. Rev. B 80, 075115 (2009).CrossRefGoogle Scholar
  42. 42.
    L. Chico, V.H. Crespi, L.X. Benedict, S.G. Louie, and M.L. Cohen, Phys. Rev. Lett. 76, 971 (1996).CrossRefGoogle Scholar
  43. 43.
    F. Ding, Phys. Rev. B 72, 245409 (2005).CrossRefGoogle Scholar
  44. 44.
    A.M. Patel and A.Y. Joshi, Procedia Technol. 23, 122 (2016).CrossRefGoogle Scholar
  45. 45.
    A. Krasheninnikov and K. Nordlund, J. Vac. Sci. Technol. B: Microelectron. Nanometer Struct. Process. Meas. Phenom. 20, 728 (2002).CrossRefGoogle Scholar
  46. 46.
    P.G. Collins, Defects and Disorder in Carbon Nanotubes, UC Irvine. (2010) Retrieved from
  47. 47.
    C.-L. Zhang and H.-S. Shen, J. Phys.: Condens. Matter 19, 386212 (2007).Google Scholar
  48. 48.
    X. Jia, J. Campos-Delgado, M. Terrones, V. Meunier, and M.S. Dresselhaus, Nanoscale 3, 86 (2011).CrossRefGoogle Scholar
  49. 49.
    Z. Liu, K. Suenaga, P.J. Harris, and S. Iijima, Phys. Rev. Lett. 102, 015501 (2009).CrossRefGoogle Scholar
  50. 50.
    H. Cheng, G.P. Pez, and A.C. Cooper, J. Am. Chem. Soc. 123, 5845 (2001).CrossRefGoogle Scholar
  51. 51.
    E. Cruz-Silva, A.R. Botello-Méndez, Z.M. Barnett, X. Jia, M. Dresselhaus, H. Terrones, M. Terrones, B.G. Sumpter, and V. Meunier, Phys. Rev. Lett. 105, 045501 (2010).CrossRefGoogle Scholar
  52. 52.
    L. Ci, L. Song, D. Jariwala, A.L. Elías, W. Gao, M. Terrones, and P.M. Ajayan, Adv. Mater. 21, 4487 (2009).CrossRefGoogle Scholar
  53. 53.
    D.V. Kosynkin, A.L. Higginbotham, A. Sinitskii, J.R. Lomeda, A. Dimiev, B.K. Price, and J.M. Tour, Nature 458, 872 (2009).CrossRefGoogle Scholar
  54. 54.
    A.L. Higginbotham, D.V. Kosynkin, A. Sinitskii, Z. Sun, and J.M. Tour, ACS Nano 4, 2059 (2010).CrossRefGoogle Scholar
  55. 55.
    L. Jiao, X. Wang, G. Diankov, H. Wang, and H. Dai, Nat. Nanotechnol. 5, 321 (2010).CrossRefGoogle Scholar
  56. 56.
    J.M. Soler, E. Artacho, J.D. Gale, A. García, J. Junquera, P. Ordejón, and D. Sánchez-Portal, J. Phys.: Condens. Matter 14, 2745 (2002).Google Scholar
  57. 57.
    D.M. Ceperley and B. Alder, Phys. Rev. Lett. 45, 566 (1980).CrossRefGoogle Scholar
  58. 58.
    J. Ferrer, C.J. Lambert, V.M. García-Suárez, D.Z. Manrique, D. Visontai, L. Oroszlany, R. Rodríguez-Ferradás, I. Grace, S. Bailey, and K. Gillemot, New J. Phys. 16, 093029 (2014).CrossRefGoogle Scholar
  59. 59.
    W. Hong, D.Z. Manrique, P. Moreno-Garcia, M. Gulcur, A. Mishchenko, C.J. Lambert, M.R. Bryce, and T. Wandlowski, J. Am. Chem. Soc. 134, 2292 (2012).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.Department of Physics, College of ScienceUniversity of SumerAl RifaiIraq

Personalised recommendations