Advertisement

The Impact of Peltier Effect on the Temperature Field During Spark Plasma Sintering of Thermoelectric Materials

  • A. S. TukmakovaEmail author
  • K. L. Samusevich
  • A. V. Asach
  • A. V. Novotelnova
Topical Collection: International Conference on Thermoelectrics 2018
  • 13 Downloads
Part of the following topical collections:
  1. International Conference on Thermoelectrics 2018
  2. International Conference on Thermoelectrics 2018

Abstract

We report about the modelling of spark plasma sintering of a line of thermoelectric materials. A significant difference of sintering temperature ΔTs from 15 K to 110 K was found in the samples studied. The Peltier effect on the graphite-thermoelectric interfaces results in such temperature difference. The rise of sintering temperature leads to the ΔTs increase. ΔTs in the vertical direction is 2–3 times higher than in the radial one. Electric insulation modelled in the horizontal graphite–thermoelectric interfaces reduced ΔTs in all the types of numerically studied samples by 59–92%.

Keywords

Thermoelectrics SPS spark plasma sintering finite elements simulation FEM 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

The reported study was funded by RFBR according to the research Project No. 18-38-00371.

References

  1. 1.
    O. Guillon, J. Gonzalez-Julian, B. Dargatz, T. Kessel, G. Schierning, J. Räthel, and M. Herrmann, Adv. Eng. Mater. 16, 7 (2014).CrossRefGoogle Scholar
  2. 2.
    Z.A. Munir, U. Anselmi-tamburini, and M. Ohyanagi, J. Mater. Sci. 41, 763 (2006).CrossRefGoogle Scholar
  3. 3.
    R. Chaim, M. Levin, A. Shlayer, and C. Estournes, Adv. Appl. Ceram. 107, 159 (2008).CrossRefGoogle Scholar
  4. 4.
    G. Molenat, L. Durand, J. Galy, and A. Couret, J. Metall. 2010, 9 (2010).Google Scholar
  5. 5.
    A. Zavaliangos, J. Zhang, M. Krammer, and J.R. Groza, Mater. Sci. Eng. A 379, 218 (2004).CrossRefGoogle Scholar
  6. 6.
    S. Munoz and U. Anselmi-Tamburini, J. Mater. Sci. 45, 6528 (2010).CrossRefGoogle Scholar
  7. 7.
    A. Pavia, L. Durand, F. Ajustron, V. Bley, G. Chevallier, A. Peigney, and C. Estournès, J. Mater. Process. Technol. 213, 1327 (2013).CrossRefGoogle Scholar
  8. 8.
    G. Shijia, X. Zhang, L. Wang, X. Gan, Z. Shen, and W. Jiang, J. Eur. Ceram. Soc. 35, 1599 (2015).CrossRefGoogle Scholar
  9. 9.
    Y. Achenani, M. Saâdaoui, A. Cheddadi, and G. Fantozzi, Mater. Des. 116, 504 (2017).CrossRefGoogle Scholar
  10. 10.
    G. Maizza, G.D. Mastrorillo, S. Grasso, H. Ning, and M.J. Reece, J. Mater. Sci. 52, 10341 (2017).CrossRefGoogle Scholar
  11. 11.
    T. Tomida, A. Sumiyoshi, G. Nie, T. Ochi, S. Suzuki, M. Kikuchi, K. Mukaiyama, and J.Q. Guo, J. Electron. Mater. 46, 2944 (2017).CrossRefGoogle Scholar
  12. 12.
    U. Anselmi-Tamburini, S. Gennari, J.E. Garay, and Z.A. Munir, Mater. Sci. Eng. A 394, 139 (2005).CrossRefGoogle Scholar
  13. 13.
    C. Manière, A. Pavia, L. Durand, G. Chevallier, K. Afanga, and C. Estournès, J. Eur. Ceram. Soc. 36, 741 (2016).CrossRefGoogle Scholar
  14. 14.
    L.P. Bulat, A.V. Novotelnova, A.S. Tukmakova, D. Yerezhep, V.B. Osvenskii, A.I. Sorokin, V.P. Panchenko, L.V. Bochkov, and S. Asmontas, J. Electron. Mater. 47, 1589 (2018).CrossRefGoogle Scholar
  15. 15.
    A. Cincotti, A.M. Locci, R. Orru, and G. Cao, AIChE J. 53, 703 (2007).CrossRefGoogle Scholar
  16. 16.
    B. Madavali, H.-S. Kim, C.-H. Lee, D.-S. Kim, and S.-J. Hong, J. Electron. Mater. (2018).  https://doi.org/10.1007/s11664-018-6706-7.Google Scholar
  17. 17.
    S. Li, J. Pei, D. Liu, L. Bao, J.-F. Li, H. Wu, and L. Li, Energy 113, 35 (2016).CrossRefGoogle Scholar
  18. 18.
    C. Fu, T. Zhu, Y. Liu, H. Xiea, and X. Zhao, Energy Environ. Sci. 8, 216 (2015).CrossRefGoogle Scholar
  19. 19.
    Y. Sadia, L. Dinnerman, and Y. Gelbstein, J. Electron. Mater. 42, 7 (2013).CrossRefGoogle Scholar
  20. 20.
    M.I. Fedorov, V.K. Zaitsev, and G.N. Isachenko, Solid State Phenom. 170, 286 (2011).CrossRefGoogle Scholar
  21. 21.
    V.V. Khovaylo, T.A. Korolkov, A.I. Voronin, M.V. Gorshenkov, and A.T. Burkov, J. Mater. Chem. A. 5, 3541 (2017).CrossRefGoogle Scholar
  22. 22.
    A. Usenko, D. Moskovskikh, M. Gorshenkov, A. Voronin, A. Stepashkin, S. Kaloshkin, D. Arkhipov, and V. Khovaylo, Scr. Mater. 127, 63 (2017).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.ITMO UniversitySaint-PetersburgRussia

Personalised recommendations