Advertisement

An All-Optical Digital 2-to-1 Multiplexer Using Photonic Crystal-Based Nonlinear Ring Resonators

  • Taiyin Zhao
  • Mehrnoush Asghari
  • Farhad MehdizadehEmail author
Article
  • 11 Downloads

Abstract

In this paper, we proposed a structure to realize an all-optical digital multiplexer. The proposed structure had two inputs, one control and one output port. Using the control port, one can decide which input port can be connected to the output port. The proposed structure consisted of two nonlinear photonic crystal ring resonators, L-shaped and T-shaped, and a straight waveguide. Total footprint and maximum delay time of the proposed structure were 479 μm2 and 3 ps, respectively.

Keywords

Photonic crystal digital multiplexer optical logic ring resonator Kerr effect 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. Yablonovitch, Phys. Rev. Lett. 58, 2059 (1987).CrossRefGoogle Scholar
  2. 2.
    K. Bhattarai, Z. Ku, S. Silva, J. Jeon, J.O. Kim, S.J. Lee, A. Urbas, and J. Zhou, Adv. Opt. Mater. 3, 1779 (2015).CrossRefGoogle Scholar
  3. 3.
    M.-S. Park, K. Bhattarai, D.-K. Kim, S.-W. Kang, J.O. Kim, J. Zhou, W.-Y. Jang, M. Noyola, A. Urbas, Z. Ku, and S.J. Lee, Opt. Express 22, 30161 (2014).CrossRefGoogle Scholar
  4. 4.
    A. Chizari, S. Abdollahramezani, M.V. Jamali, and J.A. Salehi, Opt. Lett. 41, 3451 (2016).CrossRefGoogle Scholar
  5. 5.
    M. Noori, M. Soroosh, and H. Baghban, Photonic Nanostruct. Fundam. Appl. 19, 1 (2016).CrossRefGoogle Scholar
  6. 6.
    M. Noori and M. Soroosh, Opt. Int. J. Light Electron. Opt. 126, 4775 (2015).CrossRefGoogle Scholar
  7. 7.
    B.F. Diaz-Valencia and J.M. Calero, Phys. C Supercond. 505, 74 (2014).CrossRefGoogle Scholar
  8. 8.
    D. Liu, Y. Gao, A. Tong, and S. Hu, Phys. Lett. A 379, 214 (2015).CrossRefGoogle Scholar
  9. 9.
    T. Tanabe, M. Notomi, S. Mitsugi, A. Shinya, and E. Kuramochi, Opt. Lett. 30, 2575 (2005).CrossRefGoogle Scholar
  10. 10.
    S. Serajmohammadi, H. Alipour-Banaei, and F. Mehdizadeh, Opt. Quantum Electron. 47, 1109 (2014).CrossRefGoogle Scholar
  11. 11.
    M. Danaie and H. Kaatuzian, Opt. Quantum Electron. 44, 27 (2012).CrossRefGoogle Scholar
  12. 12.
    S. Afzal, V. Ahmadi, and M. Ebnali-Heidari, J. Opt. Soc. Am. B 30, 2535 (2013).CrossRefGoogle Scholar
  13. 13.
    T.A. Moniem, Quantum Electron. 47, 169 (2017).CrossRefGoogle Scholar
  14. 14.
    F. Mehdizadeh, H. Alipour-banaei, and S. Serajmohammadi, J. Mod. Opt. 62, 430 (2017).Google Scholar
  15. 15.
    M. Neisy, M. Soroosh, and K. Ansari-Asl, Photonic Netw. Commun. 35, 245 (2017).CrossRefGoogle Scholar
  16. 16.
    F. Mehdizadeh, H. Alipour-Banaei, and S. Serajmohammadi, Opt. Int. J. Light Electron. Opt. 156, 701 (2018).CrossRefGoogle Scholar
  17. 17.
    M. Hassangholizadeh-Kashtiban, R. Sabbaghi-Nadooshan, and H. Alipour-Banaei, Opt. Int. J. Light Electron Opt. 126, 2368 (2015).CrossRefGoogle Scholar
  18. 18.
    S. Serajmohammadi, J. Opt. Commun. 37, 115 (2016).CrossRefGoogle Scholar
  19. 19.
    A. Salmanpour, S. Mohammadnejad, and P.T. Omran, Opt. Quantum Electron. 47, 3689 (2015).CrossRefGoogle Scholar
  20. 20.
    Z. Mohebbi, N. Nozhat, and F. Emami, Opt. Commun. 355, 130 (2015).CrossRefGoogle Scholar
  21. 21.
    S. Khosravi and M. Zavvari, Photonic Netw. Commun. 35, 122 (2018).CrossRefGoogle Scholar
  22. 22.
    T. Daghooghi, M. Soroosh, and K. Ansari-Asl, Photonic Netw. Commun. 35, 335 (2018).CrossRefGoogle Scholar
  23. 23.
    T. Daghooghi, M. Soroosh, and K. Ansari-Asl, Appl. Opt. 57, 2250 (2018).CrossRefGoogle Scholar
  24. 24.
    T.A. Moniem, J. Mod. Opt. 62, 1643 (2015).CrossRefGoogle Scholar
  25. 25.
    A. Salimzadeh and H. Alipour-Banaei, Opt. Commun. 410, 793 (2018).CrossRefGoogle Scholar
  26. 26.
    A. Rahmani and F. Mehdizadeh, Opt. Quantum Electron. 50, 30 (2017).CrossRefGoogle Scholar
  27. 27.
    F. Cheraghi, M. Soroosh, and G. Akbarizadeh, Superlatt. Microstruct. 113, 359 (2017).CrossRefGoogle Scholar
  28. 28.
    M.M. Karkhanehchi, F. Parandin, and A. Zahedi, Photonic Netw. Commun. 33, 159 (2017).CrossRefGoogle Scholar
  29. 29.
    A. Andalib, Photonic Netw. Commun. 35, 392 (2018).CrossRefGoogle Scholar
  30. 30.
    F. Mehdizadeh, M. Soroosh, H. Alipour-Banaei, and E. Farshidi, IEEE Photonics J. 9, 1 (2017).CrossRefGoogle Scholar
  31. 31.
    F. Mehdizadeh, M. Soroosh, H. Alipour-Banaei, and E. Farshidi, Opt. Quantum Electron. 49, 38 (2017).CrossRefGoogle Scholar
  32. 32.
    F. Mehdizadeh, M. Soroosh, H. Alipour-Banaei, and E. Farshidi, Appl. Opt. 56, 1799 (2017).CrossRefGoogle Scholar
  33. 33.
    A. Tavousi and M.A. Mansouri-Birjandi, Superlatt. Microstruct. 114, 23 (2018).CrossRefGoogle Scholar
  34. 34.
    A. Tavousi, M.A. Mansouri-Birjandi, and M. Saffari, Phys. E Low Dimens. Syst. Nanostruct. 83, 101 (2016).CrossRefGoogle Scholar
  35. 35.
    F. Mehdizadeh, H. Alipour-Banaei, and S. Serajmohammadi, J. Opt. 15, 075401 (2013).CrossRefGoogle Scholar
  36. 36.
    B. Youssefi, M.K. Moravvej-Farshi, and N. Granpayeh, Opt. Commun. 285, 3228 (2012).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  • Taiyin Zhao
    • 1
  • Mehrnoush Asghari
    • 2
  • Farhad Mehdizadeh
    • 3
    Email author
  1. 1.School of Communication and Information EngineeringUniversity of Electronic Science and Technology of ChinaChengduChina
  2. 2.Young Researchers and Elite Club, West Tehran BranchIslamic Azad UniversityTehranIran
  3. 3.Young Researchers and Elite Club, Urmia BranchIslamic Azad UniversityUrmiaIran

Personalised recommendations