Advertisement

Π Unileg Thermoelectric Structure for Cycling Robustness at High Temperature and Low Manufacturing Cost

  • Gustavo GarcíaEmail author
  • Pablo Martínez-Filgueira
  • Marta Cordon
  • Idoia Urrutibeascoa
  • Andrés Sotelo
  • Juan Carlos Diez
  • Miguel Angel Torres
  • María A. Madre
Topical Collection: International Conference on Thermoelectrics 2018
Part of the following topical collections:
  1. International Conference on Thermoelectrics 2018
  2. International Conference on Thermoelectrics 2018

Abstract

Unileg-type thermoelectric generators have proven to be a good choice for high-temperature applications, because their composition from a single thermoelectric material avoids different thermal expansion coefficients, giving the structure good mechanical strength and increased lifespan during thermal cycling. These structures are usually composed of a thermoelectric pellet with metallic electrical conductors joining the hot and cold ends of consecutive pellets. The novel unileg structure described herein is designed to deal with one of the main issues with traditional devices, viz. the physical and chemical stability of the solder between the pellet and the conductor at the hot side. The material for which this structure is proposed is a p-type Ca3Co4O9 semiconductor oxide, due to its chemical stability at high temperature and good machinability. This final requirement is related to the main innovation of the structure, viz. a partial cut that divides the pellet longitudinally, leaving two legs joined by an uncut section, forming a section similar to the letter Π. The metallic conductor stripe usually employed in unileg thermoelectric generator manufacturing is replaced by a coating of conductive material, in this case silver, on one of the legs resulting from the cut. Due to these operations, one of the legs is practically short-circuited and acts as an electrical conductor for the unileg structure, eliminating the need for soldering at the hot end of the pellet.

Keywords

Unileg thermoelectric generator thermal stress power generation thermal simulation energy efficiency 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

The Regional Development Agency of the Basque Country (SPRI) is gratefully acknowledged for economic support through the research project “High Temperature Oxide Module” (HITOM), KK-2017/00099, Programa ELKARTEK.

References

  1. 1.
    L. Young and B. Bairstow, Radioisotope power systems reference book for mission designers and planners. (Jet Propulsion Laboratory, National Aeronautics and Space Administration, 2015), http://hdl.handle.net/2014/45467. Accessed 30 Nov 2018.
  2. 2.
    KRYOTHERM, Ltd., Thermoelectric generators operating on gas fuel. (KRYOTHERM, Ltd., 2016), http://kryothermtec.com/thermoelectric-generators-operating-on-gas-fuel.html. Accessed 30 Nov 2018.
  3. 3.
    J.W. Fergus, J. Eur. Ceram. Soc. (2012).  https://doi.org/10.1016/j.jeurceramsoc.2011.10.007.
  4. 4.
    K.H. Bae, S.-M. Choi, K.-H. Kim, H.-S. Choi, W.-S. Seo, S. Lee and H.J. Hwang, J. Electron. Mater. (2015).  https://doi.org/10.1007/s11664-015-3694-8.
  5. 5.
    S. Lemonnier, C. Goupil, J. Noudem, and E. Guilmeau, J. Appl. Phys. (2008).  https://doi.org/10.1063/1.2951796.
  6. 6.
    E. Sudhakar Reddy, J.G. Noudem, S. Hebert and C. Goupil, J. Phys. D Appl. Phys. (2005).  https://doi.org/10.1088/0022-3727/38/19/026.
  7. 7.
    H. Suda and J. Sato, Thermoelectric conversion module. U.S. Patent No. 9.537.076, 3 January 2017.Google Scholar
  8. 8.
    H. Suda, T. Nemoto, and J. Sato, Thermoelectric conversion module. U.S. Patent No. 10,003,003, 19 June 2018.Google Scholar
  9. 9.
    W. Wijesekara, L. Rosendahl, D.R. Brown, and G.J. Snyder, J. Electron. Mater. (2015).  https://doi.org/10.1007/s11664-014-3569-4.
  10. 10.
    M.A. Madre, I. Urrutibeascoa, G. Garcia, M.A. Torres, A. Sotelo, and J.C Diez, J. Electron. Mater. (2018).  https://doi.org/10.1007/s11664-018-6748-x
  11. 11.
    A.D. Gardea, R. Nishimoto, N.Y.C. Yang, A.M. Morales, S.A. Whalen, J.M. Chames, and W.M. Clift, Material compatibility and thermal aging of thermoelectric materials (Sandia National Laboratories, 2009). https://prod.sandia.gov/techlib-noauth/access-control.cgi/2009/095968.pdf. Accessed 30 Nov 2018.
  12. 12.
    S. LeBlanc, S.K. Yee, M.L. Scullin, C. Dames, and K.E. Goodson, Renew. Sustain. Energy Rev. (2014).  https://doi.org/10.1016/j.rser.2013.12.030.
  13. 13.
    W.-C. Lin, Y.-S. Li, and A.T. Wu, J. Electron. Mater. (2018).  https://doi.org/10.1007/s11664-017-5906-x.
  14. 14.
    M.A. Torres, G. Garcia, I. Urrutibeascoa, M.A. Madre, J.C. Diez, and A. Sotelo (2018).  https://doi.org/10.1007/s40843-018-9339-1
  15. 15.
    J.M. Gordon, Am. J. Phys. (1991).  https://doi.org/10.1119/1.16818.
  16. 16.
    L.F. Richardson and J.A. Gaunt, Philos. Trans. R. Soc. A. (1927).  https://doi.org/10.1098/rsta.1927.0008.
  17. 17.
    W.-H. Chen, P.-H. Wu, X.-D. Wang, and Y.-L. Lin, Energy Convers. Manag. (2016).  https://doi.org/10.1016/j.enconman.2016.09.039.
  18. 18.
    F.J. Cheng, Z.L. Ma, Y. Wang, G.X. Zhang, and W.M. Long, Kovove Mater. (2014).  https://doi.org/10.4149/km_2014_3_157.
  19. 19.
    Ferrotec Corporation USA, Thermoelectric Technical Reference. Reliability of Thermoelectric Cooling Modules. (Ferrotec Corporation USA, 2015), https://thermal.ferrotec.com/technology/thermoelectric-reference-guide/thermalref10/. Accessed 30 Nov 2018.

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.CS Centro Stirling S. Coop.AretxabaletaSpain
  2. 2.Materials and Forming Department, Faculty of EngineeringMondragon UniversityMondragonSpain
  3. 3.ICMA (CSIC-Universidad de Zaragoza)SaragossaSpain

Personalised recommendations