Advertisement

Journal of Electronic Materials

, Volume 48, Issue 5, pp 2700–2711 | Cite as

Aqueous Chemical Synthesis and Consolidation of Size-Controlled Bi2Te3 Nanoparticles for Low-Cost and High-Performance Thermoelectric Materials

  • Tatsuichiro Nakamoto
  • Shun YokoyamaEmail author
  • Tomohisa Takamatsu
  • Koichi Harata
  • Kenichi Motomiya
  • Hideyuki Takahashi
  • Yuzuru Miyazaki
  • Kazuyuki Tohji
Article
  • 34 Downloads

Abstract

Bi2Te3 nanoparticles (NPs) were synthesized with controlled mean diameters of 58 nm, 82 nm, and 100 nm using an aqueous chemical reduction, in which ascorbic acid was used instead of the commonly employed toxic reducing agent. In general, organic capping agents remained on the Bi2Te3 NP surfaces, which prevented the sintering of Bi2Te3 NPs and affected their thermoelectric properties. Not only the capping agent, but also water from the synthesis process, remained on the Bi2Te3 NPs even after their consolidation by spark plasma sintering. Consequently, evaporation of the water led to the collapse of sintered Bi2Te3 NPs when heated above 100°C. After the complete removal of the surface impurities and water, the sintered Bi2Te3 NPs became stable. To achieve enhanced thermoelectric properties, a high relative density of ∼ 96% was achieved in the sintered Bi2Te3 NPs without large grain growth by optimizing the sintering temperature and holding time. Subsequently, their thermoelectric properties showed that zT of the sintered Bi2Te3 NPs 100 nm in size is higher (0.41 at 390 K) than those of smaller sizes (58 nm and 82 nm). Finally, the effect of grain size, particle size and density on their thermoelectric properties is discussed.

Keywords

Bi2Te3 thermoelectric material spark plasma sintering aqueous phase synthesis ascorbic acid 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Conflict of interest

The authors declare that they have no conflicts of interest.

Supplementary material

11664_2019_6935_MOESM1_ESM.docx (204 kb)
Supplementary material 1 (DOCX 203 kb)

References

  1. 1.
    L.E. Bell, Science 321, 1457 (2008).CrossRefGoogle Scholar
  2. 2.
    M. Scheele, N. Oeschler, K. Meier, A. Kornowski, C. Klinke, and H. Weller, Adv. Funct. Mater. 19, 3476 (2009).CrossRefGoogle Scholar
  3. 3.
    M. Saleemi, M.S. Toprak, S.H. Li, M. Johnsson, and M. Muhammed, J. Mater. Chem. 22, 725 (2012).CrossRefGoogle Scholar
  4. 4.
    Y. Min, J.W. Roh, H. Yang, M. Park, S.I. Kim, S. Hwang, S.M. Lee, K.H. Lee, and U. Jeong, Adv. Mater. 25, 1425 (2013).CrossRefGoogle Scholar
  5. 5.
    H.L. Cao, R. Venkatasubramanian, C. Liu, J. Pierce, H.R. Yang, M.Z. Hasan, Y. Wu, and Y.P. Chen, Appl. Phys. Lett. 101, 162104 (2012).Google Scholar
  6. 6.
    N. Watanabe, J. Kawamata, and N. Toshima, Chem. Lett. 33, 1368 (2004).CrossRefGoogle Scholar
  7. 7.
    Y. Xu, Z. Ren, W. Ren, G. Cao, K. Deng, and Y. Zhong, Mater. Lett. 62, 4273 (2008).CrossRefGoogle Scholar
  8. 8.
    J.P. Fu, S.Y. Song, X.G. Zhang, F. Cao, L. Zhou, X.Y. Li, and H.J. Zhang, CrystEngComm 14, 2159 (2012).CrossRefGoogle Scholar
  9. 9.
    M. Salavati-Niasari, M. Bazarganipour, and F. Davar, J. Alloys Compd. 489, 530 (2010).CrossRefGoogle Scholar
  10. 10.
    X.B. Zhao, X.H. Ji, Y.H. Zhang, G.S. Cao, and J.P. Tu, Appl. Phys. Mater. 80, 1567 (2005).CrossRefGoogle Scholar
  11. 11.
    H.J. Kim, M.K. Han, H.Y. Kim, W. Lee, and S.J. Kim, B Kor. Chem. Soc. 33, 3977 (2012).CrossRefGoogle Scholar
  12. 12.
    Y.H. Zhang, G.Y. Xu, P. Ren, Z. Wang, and C.C. Ge, J. Electron. Mater. 40, 835 (2011).CrossRefGoogle Scholar
  13. 13.
    T. Sun, X.B. Zhao, T.J. Zhu, and J.P. Tu, Mater. Lett. 60, 2534 (2006).CrossRefGoogle Scholar
  14. 14.
    C. Kim, D.H. Kim, Y.S. Han, J.S. Chung, S. Park, and H. Kim, Powder Technol. 214, 463 (2011).CrossRefGoogle Scholar
  15. 15.
    A. Purkayastha, F. Lupo, S. Kim, T. Borca-Tasciuc, and G. Ramanath, Adv. Mater. 18, 496 (2006).CrossRefGoogle Scholar
  16. 16.
    L.N. Zhou, X.B. Zhang, X.B. Zhao, T.J. Zhu, and Y.Q. Qin, J. Mater. Sci. 44, 3528 (2009).CrossRefGoogle Scholar
  17. 17.
    W. Wang, J. Goebl, L. He, S. Aloni, Y. Hu, L. Zhen, and Y. Yin, J. Am. Chem. Soc. 132, 17316 (2010).CrossRefGoogle Scholar
  18. 18.
    X. Ji, B. Zhang, T.M. Tritt, J.W. Kolis, and A. Kumbhar, J. Electron. Mater. 36, 721 (2007).CrossRefGoogle Scholar
  19. 19.
    U. Pelz, K. Kaspar, S. Schmidt, M. Dold, M. Jagle, A. Pfaadt, and H. Hillebrecht, J. Electron. Mater. 41, 1851 (2012).CrossRefGoogle Scholar
  20. 20.
    P. Dharmaiah, C.H. Lee, B. Madavali, and S.J. Hong, Arch. Metall. Mater. 62, 1005 (2017).CrossRefGoogle Scholar
  21. 21.
    S. Pradhan, R. Das, R. Bhar, R. Bandyopadhyay, and P. Pramanik, J. Nanoparticle Res. 19, 69 (2017).Google Scholar
  22. 22.
    V.R. Akshay, M.V. Suneesh, and M. Vasundhara, Inorg. Chem. 56, 6264 (2017).CrossRefGoogle Scholar
  23. 23.
    N. Mntungwa, P.V.S.R. Rajasekhar, K. Ramasamy, and N. Revaprasadu, Superlattice Microst 69, 226 (2014).CrossRefGoogle Scholar
  24. 24.
    F. Wu, H.Z. Song, F. Gao, W.Y. Shi, J.F. Jia, and X. Hu, J. Electron. Mater. 42, 1140 (2013).CrossRefGoogle Scholar
  25. 25.
    Y. Li, Q. Zhao, Y.G. Wang, and K. Bi, Mater. Sci. Semicond. Proc. 14, 219 (2011).CrossRefGoogle Scholar
  26. 26.
    Q. Zhao and Y.G. Wang, J. Alloys Compd. 497, 57 (2010).CrossRefGoogle Scholar
  27. 27.
    W. Guo, J.M. Ma, and W.J. Zheng, J. Alloys Compd. 659, 170 (2016).CrossRefGoogle Scholar
  28. 28.
    R.C. Jin, J.S. Liu, and G.H. Li, Cryst. Res. Technol. 49, 460 (2014).CrossRefGoogle Scholar
  29. 29.
    P. Srivastava and K. Singh, J. Therm. Anal. Calorim. 110, 523 (2012).CrossRefGoogle Scholar
  30. 30.
    H. Mamur, M.R.A. Bhuiyan, F. Korkmaz, and M. Nil, Renew. Sust. Energy Rev. 82, 4159 (2018).CrossRefGoogle Scholar
  31. 31.
    S. Yokoyama, K. Sato, M. Muramatsu, T. Yamasuge, T. Itoh, K. Motomiya, H. Takahashi, and K. Tohji, Adv. Powder Technol. 26, 789 (2015).CrossRefGoogle Scholar
  32. 32.
    M.E. Anderson, S.S.N. Bharadwaja, and R.E. Schaak, J. Mater. Chem. 20, 8362 (2010).CrossRefGoogle Scholar
  33. 33.
    M. Takashiri, K. Miyazaki, S. Tanaka, J. Kurosaki, D. Nagai, and H. Tsukamoto, J. Appl. Phys. 104, 084302 (2008).Google Scholar
  34. 34.
    M.R. Dirmyer, J. Martin, G.S. Nolas, A. Sen, and J.V. Badding, Small 5, 933 (2009).CrossRefGoogle Scholar
  35. 35.
    M. Takashiri, S. Tanaka, H. Hagino, and K. Miyazaki, J. Appl. Phys. 112, 084315 (2012).Google Scholar
  36. 36.
    Z.G. Zeng, P.H. Yang, and Z.Y. Hu, Appl. Surf. Sci. 268, 472 (2013).CrossRefGoogle Scholar
  37. 37.
    Q.M. Liu, D.B. Zhou, K. Nishio, R. Ichino, and M. Okido, Mater. Trans. 51, 1386 (2010).CrossRefGoogle Scholar
  38. 38.
    R. Drissi-Daoudi, A. Irhzo, and A. Darchen, J. Appl. Electrochem. 33, 339 (2003).CrossRefGoogle Scholar
  39. 39.
    V.J.S.S.P.J. Reddy, 28th International Symposium on Shock Waves (2012).Google Scholar
  40. 40.
    J. Xiong, Y. Wang, Q.J. Xue, and X.D. Wu, Green Chem. 13, 900 (2011).CrossRefGoogle Scholar
  41. 41.
    S.H. Xuan, L.Y. Hao, W.Q. Jiang, X.L. Gong, Y.A. Hu, and Z.Y. Chen, J. Magn. Magn. Mater. 308, 210 (2007).CrossRefGoogle Scholar
  42. 42.
    J.C. Deutsch, J. Chromatogr. A 881, 299 (2000).CrossRefGoogle Scholar
  43. 43.
    S. Yokoyama, K. Motomiya, H. Takahashi, and K. Tohji, J. Mater. Chem. C 4, 7494 (2016).CrossRefGoogle Scholar
  44. 44.
    S. Lerdkanchanaporn, D. Dollimore, and K.S. Alexander, J. Therm. Anal. 49, 887 (1997).CrossRefGoogle Scholar
  45. 45.
    D.D. Wagman, W.H. Evans, V.B. Parker, R.H. Schumm, I. Halow, S.M. Bailey, K.L. Churney, and R.L. Nuttall, J. Phys. Chem. Ref. Data 11, 1 (1982).CrossRefGoogle Scholar
  46. 46.
    E.M. Kosower, J. Am. Chem. Soc. 80, 3253 (1958).CrossRefGoogle Scholar
  47. 47.
    A. Seidell and W.F. Linke, Solubilities of inorganic and metal organic compounds; a compilation of quantitative solubility data from the periodical literature, 3rd ed. (New York: D. Van Nostrand Company, Inc., 1940).Google Scholar
  48. 48.
    A. Shalmashi and A. Eliassi, J. Chem. Eng. Data 53, 1332 (2008).CrossRefGoogle Scholar
  49. 49.
    J.S. Son, M.K. Choi, M.K. Han, K. Park, J.Y. Kim, S.J. Lim, M. Oh, Y. Kuk, C. Park, S.J. Kim, and T. Hyeon, Nano Lett. 12, 640 (2012).CrossRefGoogle Scholar
  50. 50.
    L. Han, S.H. Spangsdorf, N.V. Nong, L.T. Hung, Y.B. Zhang, H.N. Pham, Y.Z. Chen, A. Roch, L. Stepien, and N. Pryds, Rsc. Adv. 6, 59565 (2016).CrossRefGoogle Scholar
  51. 51.
    S. Diouf and A. Molinari, Powder Technol. 221, 220 (2012).CrossRefGoogle Scholar
  52. 52.
    N.J. Shaw, Powder Metall. Int. 21, 16 (1989).Google Scholar
  53. 53.
    R. Chaim and M. Margulis, Mater. Sci. Eng. Struct. 407, 180 (2005).CrossRefGoogle Scholar
  54. 54.
    S.S. Lim, J.H. Kim, B. Kwon, S.K. Kim, H.H. Park, K.S. Lee, J.M. Baik, W.J. Choi, D.I. Kim, D.B. Hyun, J.S. Kim, and S.H. Baek, J. Alloys Compd. 678, 396 (2016).CrossRefGoogle Scholar
  55. 55.
    A. Soni, Y.Y. Zhao, L.G. Yu, M.K.K. Aik, M.S. Dresselhaus, and Q.H. Xiong, Nano Lett. 12, 1203 (2012).CrossRefGoogle Scholar
  56. 56.
    Q.H. Zhang, X. Ai, L.J. Wang, Y.X. Chang, W. Luo, W. Jiang, and L.D. Chen, Adv. Func. Mater. 25, 966 (2015).CrossRefGoogle Scholar
  57. 57.
    D.L. Medlin and G.J. Snyder, Curr. Opin. Colloid Interface Sci. 14, 226 (2009).CrossRefGoogle Scholar
  58. 58.
    J.P. Fleurial, L. Gailliard, R. Triboulet, H. Scherrer, and S. Scherrer, J. Phys. Chem. Solids 49, 1237 (1988).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  • Tatsuichiro Nakamoto
    • 1
  • Shun Yokoyama
    • 1
    Email author
  • Tomohisa Takamatsu
    • 2
  • Koichi Harata
    • 3
  • Kenichi Motomiya
    • 1
  • Hideyuki Takahashi
    • 1
  • Yuzuru Miyazaki
    • 2
  • Kazuyuki Tohji
    • 1
  1. 1.Graduate School of Environmental StudiesTohoku UniversitySendaiJapan
  2. 2.Department of Applied Physics, School of EngineeringTohoku UniversitySendaiJapan
  3. 3.Cooperative Research and Development Center for Advanced Materials, IMRTohoku UniversitySendaiJapan

Personalised recommendations