Electronic and Magnetic Properties of Pt Based Intermetalic LaPtAs and LaPt2As Compounds

  • Y. ÖnerEmail author
  • S. Avci


We report the synthesis of polycrystalline LaPtAs and LaPt2As via solid state reactions and their temperature dependent magnetic and electrical transport properties. Crystal structures of both samples are suggested to be orthorhombic with a Pmmm space group. Temperature and field dependent magnetization measurements show that the splitting of field cooling and zero field cooling curves (initiation of irreversibility) take place at temperatures just below the Curie temperatures for both samples. This behavior is a characteristic of magnetic nanoparticles. Therefore, we propose that the magnetization arises from nanosized platinum clusters due to partial filling of the available interstitial sites. Temperature (T) dependent resistivity measurements of both alloys show metallic behavior at high temperatures and resistivity curve bends away from classical linear T dependence toward the temperature axis in the intermediate temperature range. This behavior is attributed to phonon induced interband sd scattering. The main contribution to the resistivity at low temperatures is suggested to arise from the scattering of conduction electrons by spin-waves, in the presence of strong spin–orbit coupling due to Pt atoms. We discuss the role of spin–orbit effect on the electronic structure and the magnetic state of both samples based on various nano-scale structures.


Pt based intermetalic compounds mictomagnetism spin–orbit effect phonon induced sd scattering electrical resistivity 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The author thanks Masaya Fujioka and Murat Sertkol for experimental assistance and performing magnetization and resistivity measurements, Dr. Adil Guler for sample synthesis and Profs. Takano Yoshihiko, JH Ross Jr., Yayoi Takamura and Emile Roduner for helpful discussions.


  1. 1.
    Y. Kamihara, T. Watanabe, M. Hirano, and H. Hosono, JACS 130, 3296 (2008).CrossRefGoogle Scholar
  2. 2.
    J. Paglione and R.L. Greene, Nat. Phys. 6, 645 (2010).CrossRefGoogle Scholar
  3. 3.
    K. Ishida, Y. Nakai, and H. Hosono, J. Phys. Soc. Jpn. 78, 062001 (2009).CrossRefGoogle Scholar
  4. 4.
    N. Ni, M.E. Tillman, J.-Q. Yan, A. Kracher, S.T. Hannahs, S.L. Bud’ko, and P.C. Canfield, Phys. Rev. B 78, 214515 (2008).CrossRefGoogle Scholar
  5. 5.
    A.S. Sefat, R. Jin, M.A. McGuire, B.C. Sales, D.J. Singh, and D. Mandrus, Phys. Rev. Lett. 101, 117004 (2008).CrossRefGoogle Scholar
  6. 6.
    L.J. Li, Y.K. Luo, Q.B. Wang, H. Chen, Z. Ren, Q. Tao, Y.K. Li, X. Lin, M. He, Z.W. Zhu, G.H. Cao, and Z.A. Xu, New J. Phys. 11, 025008 (2009).CrossRefGoogle Scholar
  7. 7.
    S. Sharma, A. Bharathi, S. Chandra, V.R. Reddy, S. Paulraj, A.T. Satya, V.S. Sastry, A. Gupta, and C.S. Sundar, Phys. Rev. B 81, 174512 (2010).CrossRefGoogle Scholar
  8. 8.
    F. Han, X. Zhu, P. Cheng, G. Mu, Y. Jia, L. Fang, Y. Wang, H. Luo, B. Zeng, B. Shen, L. Shan, C. Ren, and H.-H. Wen, Phys. Rev. B 80, 024506 (2009).CrossRefGoogle Scholar
  9. 9.
    N. Ni, A. Thaler, A. Kracher, J.Q. Yan, S.L. Bud’ko, and P.C. Canfield, Phys. Rev. B 80, 024511 (2009).CrossRefGoogle Scholar
  10. 10.
    A. Guler, M. Sertkol, L. Saribaev, M. Ozdemir, Y. Oner, and J.H. Ross, IEEE Trans. Magn. 51, 1 (2015).CrossRefGoogle Scholar
  11. 11.
    C. Boyraz, A. Guler, M. Ozdemir, and Y. Oner, J. Supercond. Nov. Magn. 30, 1145 (2017).CrossRefGoogle Scholar
  12. 12.
    Y. Guo, X. Wang, J. Li, S. Zhang, K. Yamaura, and E. Takayama-Muromachi, J. Phys. Soc. Jpn. 81, 064704 (2012).CrossRefGoogle Scholar
  13. 13.
    H.Q. Yuan, D.F. Agterberg, N. Hayashi, P. Badica, D. Vandervelde, K. Togano, M. Sigrist, and M.B. Salamon, Phys. Rev. Lett. 97, 017006 (2006).CrossRefGoogle Scholar
  14. 14.
    A.L. Ivanovskii, Platin. Met. Rev. 57, 87 (2013).CrossRefGoogle Scholar
  15. 15.
    W.B. Jiang, C.Y. Guo, Z.F. Weng, Y.F. Wang, Y.H. Chen, Y. Chen, G.M. Pang, T. Shang, X. Lu, and H.Q. Yuan, J. Phys. Condens. Matter 27, 022202 (2015).CrossRefGoogle Scholar
  16. 16.
    S. Kim, K. Kim, and B.I. Min, Sci. Rep. 5, 15052 (2015).CrossRefGoogle Scholar
  17. 17.
    K. Kudo, Y. Nishikubo, and M. Nohara, J. Phys. Soc. Jpn. 79, 123710 (2010).CrossRefGoogle Scholar
  18. 18.
    X. Xu, B. Chen, W.H. Jiao, B. Chen, C.Q. Niu, Y.K. Li, J.H. Yang, A.F. Bangura, Q.L. Ye, C. Cao, J.H. Dai, G. Cao, and N.E. Hussey, Phys. Rev. B 87, 224507 (2013).CrossRefGoogle Scholar
  19. 19.
    T. Aoyama, T. Kubo, H. Matsuno, H. Kotegawa, H. Tou, A. Mitsuda, Y. Nagano, N. Araoka, H. Wada, and Y. Yamada, J. Phys. Conf. Ser. 807, 062002 (2017).CrossRefGoogle Scholar
  20. 20.
    R. Gupta, S.K. Dhar, A. Thamizhavel, K.P. Rajeev, and Z. Hossain, J. Phys. Condens. Matter 29, 255601 (2017).CrossRefGoogle Scholar
  21. 21.
    Y. Nagano, N. Araoka, A. Mitsuda, H. Yayama, H. Wada, M. Ichihara, M. Isobe, and Y. Ueda, J. Phys. Soc. Jpn. 82, 064715 (2013).CrossRefGoogle Scholar
  22. 22.
    S. Ouardi, C. Shekhar, G.H. Fecher, X. Kozina, G. Stryganyuk, C. Felser, S. Ueda, and K. Kobayashi, Appl. Phys. Lett. 98, 211901 (2011).CrossRefGoogle Scholar
  23. 23.
    N.P. Butch, P. Syers, K. Kirshenbaum, A.P. Hope, and J. Paglione, Phys. Rev. B 84, 220504 (2011).CrossRefGoogle Scholar
  24. 24.
    S. Chadov, X. Qi, J. Kübler, G.H. Fecher, C. Felser, and S.C. Zhang, Nat. Mater. 9, 541 (2010).CrossRefGoogle Scholar
  25. 25.
    J. Goryo, M.H. Fischer, and M. Sigrist, Phys. Rev. B 86, 100507 (2012).CrossRefGoogle Scholar
  26. 26.
    F. Casper, T. Graf, S. Chadov, B. Balke, and C. Felser, Semicond. Sci. Technol. 27, 063001 (2012).CrossRefGoogle Scholar
  27. 27.
    M. Fujioka, M. Ishimaru, T. Shibuya, Y. Kamihara, C. Tabata, H. Amitsuka, A. Miura, M. Tanaka, Y. Takano, H. Kaiju, and J. Nishii, J. Am. Chem. Soc. 138, 9927 (2016).CrossRefGoogle Scholar
  28. 28.
    K. Kudo, Y. Saito, T. Takeuchi, S. Ayukawa, T. Kawamata, S. Nakamura, Y. Koike, and M. Nohara, J. Phys. Soc. Jpn. 87, 063702 (2018).CrossRefGoogle Scholar
  29. 29.
    D. Fay and J. Appel, Phys. Rev. Lett. 89, 127001 (2002).CrossRefGoogle Scholar
  30. 30.
    Y. Yamamoto, T. Miura, Y. Nakae, T. Teranishi, M. Miyake, and H. Hori, Physica B 329–333, 1183 (2003).CrossRefGoogle Scholar
  31. 31.
    X. Liu, M. Bauer, H. Bertagnolli, E. Roduner, J. van Slageren, and F. Phillipp, Phys. Rev. Lett. 97, 253401 (2006).CrossRefGoogle Scholar
  32. 32.
    J. Bartolomé, F. Bartolomé, L.M. García, E. Roduner, Y. Akdogan, F. Wilhelm, and A. Rogalev, Phys. Rev. B 80, 014404 (2009).CrossRefGoogle Scholar
  33. 33.
    E. Roduner, Chem. Soc. Rev. 43, 8226 (2014).CrossRefGoogle Scholar
  34. 34.
    G.V. Smith, S. Tjandra, M. Musoiu, T. Wiltowski, F. Notheisz, M. Bartók, I. Hannus, D. Ostgard, and V. Malhotra, J. Catal. 161, 441 (1996).CrossRefGoogle Scholar
  35. 35.
    J. Wei and E. Iglesia, J. Phys. Chem. B 108, 4094 (2004).CrossRefGoogle Scholar
  36. 36.
    S. Sun, C.B. Murray, D. Weller, L. Folks, and A. Moser, Science 287, 1989 (2000).CrossRefGoogle Scholar
  37. 37.
    S.A. Majetich and Y. Jin, Science 284, 470 (1999).CrossRefGoogle Scholar
  38. 38.
    P. Gambardella, S. Rusponi, M. Veronese, S.S. Dhesi, C. Grazioli, A. Dallmeyer, I. Cabria, R. Zeller, P.H. Dederichs, K. Kern, C. Carbone, and H. Brune, Science 300, 1130 (2003).CrossRefGoogle Scholar
  39. 39.
    G.W. Crabtree, M.S. Dresselhaus, and M.V. Buchanan, Phys. Today 57, 39 (2004).CrossRefGoogle Scholar
  40. 40.
    N. Agraït, A.L. Yeyati, and J.M. van Ruitenbeek, Phys. Rep. 377, 81 (2003).CrossRefGoogle Scholar
  41. 41.
    S.R. Bahn and K.W. Jacobsen, Phys. Rev. Lett. 87, 266101 (2001).CrossRefGoogle Scholar
  42. 42.
    F. Strigl, C. Espy, M. Bückle, E. Scheer, and T. Pietsch, Nat. Commun. 6, 6172 (2015).CrossRefGoogle Scholar
  43. 43.
    B.H. Toby and R.B. Von Dreele, J. Appl. Crystallogr. 46, 544 (2013).CrossRefGoogle Scholar
  44. 44.
    T. Gruner, D. Jang, Z. Huesges, R. Cardoso-Gil, G.H. Fecher, M.M. Koza, O. Stockert, A.P. Mackenzie, M. Brando, and C. Geibel, Nat. Phys. 13, 967 (2017).CrossRefGoogle Scholar
  45. 45.
    X.X. Zhang, J.M. Hernandez, J. Tejada, and R.F. Ziolo, Phys. Rev. B 54, 4101 (1996).CrossRefGoogle Scholar
  46. 46.
    R.K. Zheng, G.H. Wen, K.K. Fung, and X.X. Zhang, Phys. Rev. B 69, 214431 (2004).CrossRefGoogle Scholar
  47. 47.
    V. Skumryev, S. Stoyanov, Y. Zhang, G. Hadjipanayis, D. Givord, and J. Nogués, Nature 423, 850 (2003).CrossRefGoogle Scholar
  48. 48.
    K. Binder and A.P. Young, Rev. Mod. Phys. 58, 801 (1986).CrossRefGoogle Scholar
  49. 49.
    R.B. Goldfarb and C.E. Patton, Phys. Rev. B 24, 1360 (1981).CrossRefGoogle Scholar
  50. 50.
    P.A. Beck, Phys. Rev. B 32, 7255 (1985).CrossRefGoogle Scholar
  51. 51.
    R.H. Colman and A.C. Mclaughlin, Phys. Rev. B 85, 144419 (2012).CrossRefGoogle Scholar
  52. 52.
    M. Suzuki, S.I. Fullem, and I.S. Suzuki, J. Magn. Magn. Mater. 322, 3178 (2010).CrossRefGoogle Scholar
  53. 53.
    A.M. Toxen and R.J. Gambino, Phys. Lett. A 28, 214 (1968).CrossRefGoogle Scholar
  54. 54.
    Z. Alborzi Avanaki and A. Hassanzadeh, J. Theor. Appl. Phys. 7, 19 (2013).CrossRefGoogle Scholar
  55. 55.
    L. Xiao and L. Wang, J. Phys. Chem. A 108, 8605 (2004).CrossRefGoogle Scholar
  56. 56.
    X. Teng, W.-Q. Han, W. Ku, and M. Hücker, Angew. Chem. 120, 2085 (2008).CrossRefGoogle Scholar
  57. 57.
    Y. Mishin, D. Farkas, M.J. Mehl, and D.A. Papaconstantopoulos, Phys. Rev. B 59, 3393 (1999).CrossRefGoogle Scholar
  58. 58.
    M.J. Mehl and D.A. Papaconstantopoulos, Phys. Rev. B 54, 4519 (1996).CrossRefGoogle Scholar
  59. 59.
    V. Kumar and Y. Kawazoe, Phys. Rev. B 77, 205418 (2008).CrossRefGoogle Scholar
  60. 60.
    K. Bhattacharyya and C. Majumder, Chem. Phys. Lett. 446, 374 (2007).CrossRefGoogle Scholar
  61. 61.
    K. Balasubramanian, J. Chem. Phys. 87, 6573 (1987).CrossRefGoogle Scholar
  62. 62.
    M. El-Hilo, J. Appl. Phys. 112, 103915 (2012).CrossRefGoogle Scholar
  63. 63.
    A.K. Sinha, Phys. Rev. B 1, 4541 (1970).CrossRefGoogle Scholar
  64. 64.
    M.A. Kouacou, A.A. Koua, Z. Yeo, A. Akichi, A. Tanoh, and M. Koffi, J. Appl. Sci. 8, 682 (2008).CrossRefGoogle Scholar
  65. 65.
    D.L. Mills and P. Lederer, J. Phys. Chem. Solids 27, 1805 (1966).CrossRefGoogle Scholar
  66. 66.
    N.H. Andersen and H. Smith, Phys. Rev. B 19, 384 (1979).CrossRefGoogle Scholar
  67. 67.
    R.W. Cohen, G.D. Cody, and J.J. Halloran, Phys. Rev. Lett. 19, 840 (1967).CrossRefGoogle Scholar
  68. 68.
    F.Y. Fradin, Solid State Commun. 16, 1193 (1975).CrossRefGoogle Scholar
  69. 69.
    K.G. Suresh and K.V.S. Rama Rao, J. Alloys Compd. 238, 90 (1996).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.Department of Physics Engineering, Faculty of Sciences and LettersIstanbul Technical UniversityMaslakTurkey
  2. 2.Department of Physics EngineeringIstanbul Medeniyet UniversityÜsküdarTurkey

Personalised recommendations