Advertisement

Development of the Automotive Thermoelectric Generator Electrical Network

  • Pavel ShiriaevEmail author
  • Konstantin Shishov
  • Alexey Osipkov
  • Leonid Tishchenko
Topical Collection: International Conference on Thermoelectrics 2018
  • 10 Downloads
Part of the following topical collections:
  1. International Conference on Thermoelectrics 2018
  2. International Conference on Thermoelectrics 2018

Abstract

The automotive thermoelectric generator (ATEG) produces electrical power by converting heat energy of engine exhaust gasses. The transfer of this electrical energy to a vehicle’s electrical system should be done with minimum losses. The electrical parameters of thermoelectric modules (TEMs), which are installed in the ATEG, are changing due to non-stationary ATEG operating conditions. This fact leads to a mismatch between ATEG resistance and equivalent electrical load resistance, causing the issue of generating maximum energy. One potential solution to this problem is a maximum power point tracking (MPPT) method. MPPT controllers provide harvesting maximum power from the ATEG. In this way, MPPT application is required for thermoelectric systems with variable heat flow. However, any MPPT controller has its own conversion losses, which affect overall ATEG system efficiency. These losses depend on MPPT controller working conditions, i.e. TEMs output voltages and currents. Therefore, the simulation of the electrical circuit should be done during driving cycles to evaluate the total efficiency of the entire system. This evaluation helps to estimate the effectiveness of each element of the electrical network. In this paper, we elaborate our theoretical and experimental studies of the ATEG electrical network and do comprehensive discussion over the design for it.

Keywords

Automotive thermoelectric generator thermoelectric module maximum power point tracking perturb and observe electrical losses efficiency 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

This paper was financially supported by the Ministry of Education and Science of the Russian Federation on the program to improve the competitiveness of Peoples’ Friendship University of Russia (RUDN University) among the world’s leading research and education centers in the 2016–2020.

References

  1. 1.
    G. Fontaras, N.-G. Zacharof, and B. Ciuffo, Prog. Energy Combust. Sci. 60, 97 (2017).CrossRefGoogle Scholar
  2. 2.
    STATISTA International Car Sales 1990–2018 Statistic, https://www.statista.com/statistics/200002/international-car-sales-since-1990/. Accessed 30 July 2018.
  3. 3.
    G.B. Hamra, F. Laden, A.J. Cohen, O. Raaschou-Nielsen, M. Brauer, and D. Loomis, Environ. Health Perspect. 123, 1107 (2015).CrossRefGoogle Scholar
  4. 4.
    F. An, R. Earley, and L. Green-Weiskel, Global overview on fuel efficiency and motor vehicle emission standards: policy options and perspectives for international cooperation. (United Nations, Department of Economic and Social Affairs, Commission on Sustainable Development Nineteenth Session New York, 2–13 May 2011. Background paper, No. 3, CSD19/2011/BP3), http://graenaorkan.is.w7.nethonnun.is/wp-content/uploads/2011/10/Background-paper3-transport1.pdf. Accessed 30 July 2018.
  5. 5.
    M. Hatami, D. Ganji, and M. Gorji-Bandpy, Renew. Sustain. Energy Rev. 37, 168 (2014).CrossRefGoogle Scholar
  6. 6.
    A. Osipkov, R. Poshekhonov, K. Shishov, and P. Shiriaev, Bringing Thermoelectricity into Reality, ed. P. Aranguren (London: IntechOpen, 2018), p. 185.Google Scholar
  7. 7.
    R.A. Poshekhonov, G.A. Arutyunyan, S.A. Pankratov, A.S. Osipkov, D.O. Onishchenko, and A.I. Leontyev, Semiconductors 51, 981 (2017).CrossRefGoogle Scholar
  8. 8.
    D.O. Onishchenko, S.A. Pankratov, A.A. Zotov, A.S. Osipkov, and R.A. Poshekhonov, Int. J. Appl. Eng. Res. 12, 721 (2017).Google Scholar
  9. 9.
    A.I. Leontiev, R.Z. Kavtaradze, D.O. Onishchenko, A.S. Golosov, and S.A. Pankratov, High Temp. 54, 105 (2016).CrossRefGoogle Scholar
  10. 10.
    R.A. Poshekhonov, A.S. Osipkov, and M.O. Makeev, Glob. J. Pure Appl. Math. 12, 677 (2016).Google Scholar
  11. 11.
    A.I. Leontyev, D.O. Onishchenko, and G.A. Arutyunyan, Thermophys. Aeromech. 23, 747 (2016).CrossRefGoogle Scholar
  12. 12.
    A. Osipkov, R. Poshekhonov, G. Arutyunyan, A. Basov, and R. Safonov, J. Electron. Mater. 46, 6195 (2017).CrossRefGoogle Scholar
  13. 13.
    L.I. Anatychuk and R.V. Kuz, Computer Designing and Test Results of Automotive Thermoelectric Generator. Thermoelectrics Goes Automotive (Renningen: Thermoelektrik II expert Verlag, IAV, 2011).Google Scholar
  14. 14.
    D. Tatarinov, M. Koppers, G. Bastian, and D. Schramm, J. Electron. Mater. 42, 2274 (2013).CrossRefGoogle Scholar
  15. 15.
    S. Yu, Q. Du, H. Diao, G. Shu, and K. Jiao, Energy Convers. Manag. 96, 363 (2015).CrossRefGoogle Scholar
  16. 16.
    W. Fang, S. Quan, C. Xie, X. Tang, L. Wang, and L. Huang, J. Electron. Mater. 45, 1613 (2015).CrossRefGoogle Scholar
  17. 17.
    D. Mitrani, J. Tome, J. Salazar, A. Turo, M. Garcia, and J. Chavez, IEEE Trans. Instrum. Meas. 54, 1548 (2005).CrossRefGoogle Scholar
  18. 18.
    A. Montecucco, J. Siviter, and A.R. Knox, Appl. Energy 123, 47 (2014).CrossRefGoogle Scholar
  19. 19.
    N. Femia, G. Petrone, G. Spagnuolo, and M. Vitelli, IEEE Trans. Power Electron. 20, 963 (2005).CrossRefGoogle Scholar
  20. 20.
    M.K. Kazimierczuk, Pulse-Width Modulated DC–DC Power Converters, 2nd ed. (Chichester: Wiley, 2016).Google Scholar
  21. 21.
    D. Schelle and J. Castorena, Power Electron. Technol. 46–53 (2006).Google Scholar
  22. 22.
    D. Linden, Handbook of Batteries (New York: McGraw-Hill, 1995).Google Scholar
  23. 23.
    D. Jänsch, J. Lauterbach, M. Pohle, and P. Steinberg, in Conference of Energy and Thermal Management, Air Conditioning, Waste Heat Recovery (2016), pp. 116–143.Google Scholar
  24. 24.
    V. Jovovic, Thermoelectric Waste Heat Recovery Program for Passenger Vehicles, https://www.osti.gov/servlets/purl/1337561. Accessed 31 July 2018.
  25. 25.
    I. Arsie, A. Cricchio, C. Pianese, V. Ricciardi, and M.D. Cesare, Energy Procedia 82, 81 (2015).CrossRefGoogle Scholar
  26. 26.
    R. Kühn, O. Koeppen, P. Schulze, and D. Jänsch, Mater. Today: Proc. 2, 761 (2015).CrossRefGoogle Scholar
  27. 27.
    J. Merkisz, P. Fuc, P. Lijewski, A. Ziolkowski, and K.T. Wojciechowski, J. Electron. Mater. 47, 3059 (2018).Google Scholar
  28. 28.
    R. Quan, Appl. Mech. Mater. 700, 694 (2014).CrossRefGoogle Scholar
  29. 29.
    R.R. Gopi and S. Sreejith, Renew. Sustain. Energy Rev. 94, 1 (2018).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.Bauman Moscow State Technical UniversityMoscowRussian Federation
  2. 2.Peoples Friendship University of Russia (RUDN University)MoscowRussian Federation

Personalised recommendations