Advertisement

Enhanced Electromagnetic and Microwave Absorption Properties of Hybrid Ti3SiC2/BaFe12O19 Powders

  • Yi LiuEmail author
  • Xiaolei Su
  • Fa Luo
  • Jie Xu
  • Junbo Wang
  • Xinhai He
  • Yinhu Qu
Article
  • 2 Downloads

Abstract

In this work, Ti3SiC2 powders were composited with BaFe12O19 to improve electromagnetic and microwave absorption properties. The hybrid Ti3SiC2/BaFe12O19 powders were prepared in two different ways: mechanical mixing and auto-combustion. The electromagnetic and microwave absorption properties of the powders were investigated in the frequency range of 8.2–12.4 gigahertz (GHz). For the hybrid Ti3SiC2/BaFe12O19 powders, the complex permittivity was higher while the complex permeability was lower than individual BaFe12O19 powders. In addition, the hybrid powders prepared by auto-combustion had higher complex permittivity and permeability than the mechanical mixing powders. The most favorable absorption performance was obtained for the sample with a thickness of 2.4 mm. The reflection loss value below − 5 decibels (dB) was in the frequency range of 9.3–12.4 GHz, with a minimum reflection loss value of − 14.6 dB at 10.9 GHz.

Keywords

Ti3SiC2/BaFe12O19 powders auto-combustion process complex spermittivity microwave absorption property 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

This work was supported by the PHD Start-up Fund of XPU (BS1615), the Young Talent fund of University Association for Science and Technology in Shaanxi, China (No. 20170521), Scientific Research Program Funded by Shaanxi Provincial Education Department (Program No. 18JK0353), Scientific and Technological Innovation Guidance Project of Xi’an Science and Technology Bureau (201805030YD8CG14(14)), Shaanxi Special Talents Support Plan, Shaanxi University Youth Outstanding Talents Support Plan.

References

  1. 1.
    M.W. Barsoum and T.E. Raghy, J. Am. Ceram. Soc. 79, 1954 (1996).Google Scholar
  2. 2.
    T.E. Raghy, M.W. Barsoum, A. Zavaliangos, and S.R. Kalidindi, J. Am. Ceram. Soc. 82, 2857 (1999).Google Scholar
  3. 3.
    J. Zhang, L. Wang, W. Jiang, and L. Chen, Mater. Sci. Eng. A 487, 140 (2008).Google Scholar
  4. 4.
    J. Zhang, T. Wu, L. Wang, W. Jiang, and L. Chen, Compos. Sci. Technol. 68, 501 (2008).Google Scholar
  5. 5.
    J. Yang, L. Pan, W. Gu, T. Qiu, Y. Zhang, and S. Zhu, Ceram. Int. 38, 652 (2012).Google Scholar
  6. 6.
    Y. Liu, F. Luo, W. Zhou, and D. Zhu, J. Alloys Compd. 576, 46 (2013).Google Scholar
  7. 7.
    Z. Li, X. Wei, F. Luo, W. Zhou, and Y. Hao, Ceram. Int. 40, 2548 (2014).Google Scholar
  8. 8.
    Y. Liu, Y. Li, F. Luo, X. Su, J. Xu, J. Wang, X. He, and Y. Qu, J. Alloys Compd. 715, 25 (2017).CrossRefGoogle Scholar
  9. 9.
    Y. Liu, X. Su, F. Luo, J. Xu, J. Wang, X. He, and Y. Qu, Ceram. Int. 44, 1996 (2018).Google Scholar
  10. 10.
    W. Chen, J. Zheng, and Y. Li, J. Alloys Compd. 513, 423 (2012).Google Scholar
  11. 11.
    J. Qiu, Y. Wang, and M. Gu, J. Mater. Sci. 42, 168 (2007).Google Scholar
  12. 12.
    T. Zhao, X. Ji, W. Jin, S. Guo, H. Zhao, W. Yang, X. Wang, C. Xiong, A. Dang, H. Li, T. Li, S. Shang, and Z. Zhou, J. Alloys Compd. 703, 428 (2017).CrossRefGoogle Scholar
  13. 13.
    T. Zhao, X. Ji, W. Jin, C. Xiong, W. Ma, C. Wang, S. Duan, A. Dang, H. Li, T. Li, S. Shang, and Z. Zhou, J. Alloys Compd. 708, 120 (2017).Google Scholar
  14. 14.
    H.K. Choudhary, R. Kumar, A.V. Anupama, and B. Sahoo, Ceram. Int. 44, 8887 (2018).Google Scholar
  15. 15.
    C. Qiang, J. Xu, Z. Zhang, L. Tian, S. Xiao, Y. Liu, and P. Xu, J. Alloys Compd. 506, 95 (2010).CrossRefGoogle Scholar
  16. 16.
    Y. Liu, Y. Li, F. Luo, X. Su, J. Xu, J. Wang, X. He, and Y. Shi, J. Mater. Sci. Mater. Electron. 28, 6625 (2017).Google Scholar
  17. 17.
    H. Wu, L. Wang, S. Guo, and Z. Shen, Appl. Phys. A 108, 443 (2012).CrossRefGoogle Scholar
  18. 18.
    X. Su, J. Zhang, Y. Jia, Y. Liu, J. Xu, and J. Wang, J. Alloys Compd. 695, 1423 (2017).Google Scholar
  19. 19.
    J. Li, W. Feng, J. Wang, X. Zhao, W. Zheng, and H. Yang, J. Magn. Magn. Mater. 393, 85 (2015).CrossRefGoogle Scholar
  20. 20.
    Z. Huang, W. Zhou, X. Tang, and J. Zhu, J. Alloys Compd. 509, 1921 (2011).Google Scholar
  21. 21.
    H.K. Choudhary, S.P. Pawar, R. Kumar, A.V. Anupama, S. Bose, and B. Sahoo, Chem. Sel. 2, 830 (2017).Google Scholar
  22. 22.
    R. Kumar, H.K. Choudhary, S.P. Pawar, S. Bose, and B. Sahoo, Phys. Chem. Chem. Phys. 19, 23268 (2017).CrossRefGoogle Scholar
  23. 23.
    H.K. Choudhary, R. Kumar, S.P. Pawar, A.V. Anupama, S. Bose, and B. Sahoo, Chem. Sel. 3, 2120 (2018).Google Scholar
  24. 24.
    X. Huang, J. Zhang, M. Lai, and T. Sang, J. Alloys Compd. 627, 370 (2015).CrossRefGoogle Scholar
  25. 25.
    J. Sun, H. Xu, Y. Shen, H. Bi, W. Liang, and R.B. Yang, J. Alloys Compd. 548, 20 (2013).CrossRefGoogle Scholar
  26. 26.
    Y. Liu, F. Luo, J. Su, W. Zhou, and D. Zhu, J. Electron. Mater. 44, 870 (2015).Google Scholar
  27. 27.
    J. Singh, C. Singh, D. Kaur, S.B. Narang, R. Joshi, S.R. Mishra, R. Jotania, M. Ghimire, and C.C. Chauhan, Mater. Des. 110, 754 (2016).CrossRefGoogle Scholar
  28. 28.
    C. Dan, X. Liu, R. Yu, J. Ye, and Y. Shi, Compos. A 89, 37 (2016).Google Scholar
  29. 29.
    H. Lv, G. Ji, H. Zhang, M. Li, Z. Zuo, Y. Zhao, B. Zhang, D. Tang, and Y. Du, Sci. Rep. 5, 18249 (2015).CrossRefGoogle Scholar
  30. 30.
    M. Qiao, X. Lei, Y. Ma, L. Tian, K. Su, and Q. Zhang, Chem. Eng. J. 304, 560 (2016).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  • Yi Liu
    • 1
    Email author
  • Xiaolei Su
    • 1
  • Fa Luo
    • 2
  • Jie Xu
    • 1
  • Junbo Wang
    • 1
  • Xinhai He
    • 1
  • Yinhu Qu
    • 1
  1. 1.Xi’an Polytechnic UniversityXi’anPeople’s Republic of China
  2. 2.Northwestern Polytechnical UniversityXi’anChina

Personalised recommendations