A Low-Power Thermoelectric Energy Harvesting System for High Internal Resistance Thermoelectric Generators

  • Kunpeng Wang
  • Mingjie Guan
  • Fu Chen
  • Wei-Hsin LiaoEmail author
Progress and Challenges for Emerging Integrated Energy Modules
Part of the following topical collections:
  1. Progress and Challenges for Emerging Integrated Energy Modules
  2. Progress and Challenges for Emerging Integrated Energy Modules


This paper presents an energy harvesting system targeted to harness energy from a high internal resistance thermoelectric generator (TEG) under low temperature difference condition. The system is based on a DC–DC boost converter with a maximum power point tracking scheme. An optimal current control scheme and zero current switching technique are applied for low power consumption and high efficiency. An analysis on power losses of the system is performed. A prototype system is built to show the performance and to verify the theoretical analysis. Experimental results show that the proposed system can harvest enough power to run a wireless sensor node at a transmission cycle of 30 s with a minimum input power of 27 μW and a low temperature difference of 1.9 K across the TEG. The peak efficiency of the power conversion can reach 75.2% in the considered input voltage range.


Boost converter DC–DC converter maximum power point tracking thermal energy harvesting zero current switching 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The work described in this paper was supported by grants from the China Science Foundation (Project Nos. 51777177, 51707168) and a grant from the Innovation and Technology Commission of Hong Kong Special Administrative Region, China (Project No. ITS/248/14FP).


  1. 1.
    K. Romanjek, S. Vesin, L. Aixala, T. Baffie, G. Bernard-Granger, and J. Dufourcq, J. Electron. Mater. 44, 2192 (2015).CrossRefGoogle Scholar
  2. 2.
    D. Jean-Marie, R. Monthéard, M. Bafleur, V. Boitier, P. Durand-Estèbe, and P. Tounsi, J. Electron. Mater. 43, 2444 (2014).CrossRefGoogle Scholar
  3. 3.
    M. Thielen, G. Kara, I. Unkovic, D. Majoe, and C. Hierold, J. Electron. Mater. 47, 3307 (2018).CrossRefGoogle Scholar
  4. 4.
    F. Deng, H. Qiu, J. Chen, L. Wang, and B. Wang, IEEE Trans. Ind. Electron. 64, 1477 (2017).CrossRefGoogle Scholar
  5. 5.
    K.T. Settaluri, H. Lo, and R.J. Ram, J. Electron. Mater. 41, 984 (2012).CrossRefGoogle Scholar
  6. 6.
    M. Guan, K. Wang, Q. Zhu, and W. Liao, J. Electron. Mater. 45, 5514 (2016).CrossRefGoogle Scholar
  7. 7.
    M. Guan, K. Wang, D. Xu, and W. Liao, J. Energy Convers. Manag. 138, 30 (2017).CrossRefGoogle Scholar
  8. 8.
    Micropelt, MPG-D655 Thin Film Thermogenerator datasheet (2014).
  9. 9.
    Tellurex, Tellurex Thermoelectric Energy Harvester-G1-1.0-127-1.27, datasheet (2011).
  10. 10.
    Y. The and P.K.T. Mok, IEEE J. Solid State Circuits 49, 2694 (2014).CrossRefGoogle Scholar
  11. 11.
    Z. Jorge, C. Salvador, C. Alfredo, and S. Edgar, IEEE Trans. Circuits Syst. 62, 1918 (2015).CrossRefGoogle Scholar
  12. 12.
    Texas Instruments, BQ25504 datasheet (2018).
  13. 13.
    Linear Technology, LTC 3108 datasheet (2010).
  14. 14.
    Texas Instruments, EZ430-RF2500 datasheet (2012).

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.Department of Mechanical and Automation EngineeringThe Chinese University of Hong KongShatinChina
  2. 2.School of Aerospace EngineeringXiamen UniversityXiamenChina

Personalised recommendations