Protective Properties of Electrochemically Deposited Al-Based Coatings on Yb0.3Co4Sb12 Skutterudite

  • Xin Bao
  • Ming Gu
  • Qihao Zhang
  • Zihua Wu
  • Shengqiang BaiEmail author
  • Lidong Chen
  • Huaqing XieEmail author
Progress and Challenges for Emerging Integrated Energy Modules
Part of the following topical collections:
  1. Progress and Challenges for Emerging Integrated Energy Modules
  2. Progress and Challenges for Emerging Integrated Energy Modules


To protect CoSb3-based skutterudite thermoelectric materials from oxidation and to suppress the sublimation of antimony in long-time service, a series of surface coatings including Al, Al-Ni, Al-Ni-Al were deposited onto Yb0.3Co4Sb12 by using an electrochemical deposition method. The thermal aging behavior for the Yb0.3Co4Sb12 samples with and without different surface coatings were investigated by accelerated thermal aging tests at 873 K. Thermoelectric properties of Yb0.3Co4Sb12 with different coatings after aging are used as the evaluation criteria for coating effectiveness. After thermal aging at 873 K for 30 days, the thermoelectric properties of Yb0.3Co4Sb12 coated with Al-Ni double-layered coating were almost undecreased, indicating that the Al-Ni coating is suitable for protecting CoSb3-based skutterudite from oxidation and for suppressing the sublimation of antimony. It is expected that this coating could improve the reliability of CoSb3-based devices and could accelerate the application of skutterudite thermoelectric generators.


Thermoelectric coating electrochemical deposition CoSb3-based skutterudite 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was supported by National Natural Science Foundation of China (NSFC) under the Nos. 51676117, 51406111 and 51572282, Shanghai Polytechnic University Graduate Program Foundation No. EGD17YJ0036.


  1. 1.
    J. Zhang, B. Xu, F. Yu, D. Yu, Z. Liu, J. He, and Y. Tian, J. Alloys Compd. 503, 490 (2010).CrossRefGoogle Scholar
  2. 2.
    L. Zhang, N. Melnychenko-Koblyuk, E. Royanian, A. Grytsiv, P. Rogl, and E. Bauer, J. Alloys Compd. 504, 53 (2010).CrossRefGoogle Scholar
  3. 3.
    Z. Xiong, X. Chen, X. Huang, S. Bai, and L. Chen, Acta Mater. 58, 3995 (2010).CrossRefGoogle Scholar
  4. 4.
    X. Shi, J. Yang, J.R. Salvador, M. Chi, J.Y. Cho, H. Wang, S. Bai, J. Yang, W. Zhang, and L. Chen, J. Am. Chem. Soc. 133, 7837 (2011).CrossRefGoogle Scholar
  5. 5.
    G. Rogl, A. Grytsiv, P. Rogl, N. Peranio, E. Bauer, M. Zehetbauer, and O. Eibl, Acta Mater. 63, 30 (2014).CrossRefGoogle Scholar
  6. 6.
    P. Qiu, X. Xia, X. Huang, M. Gu, Y. Qiu, and L. Chen, J. Alloys Compd. 612, 365 (2014).CrossRefGoogle Scholar
  7. 7.
    D. Zhao, C. Tian, S. Tang, Y. Liu, L. Jiang, and L. Chen, Mater. Sci. Semicond. Process. 13, 221 (2010).CrossRefGoogle Scholar
  8. 8.
    Q. Zhang, X. Huang, S. Bai, X. Shi, C. Uher, and L. Chen, Adv. Eng. Mater. 18, 194 (2016).CrossRefGoogle Scholar
  9. 9.
    M.S. El-Genk, H.H. Saber, T. Caillat, and J. Sakamoto, Energy Convers. Manage. 47, 174 (2006).CrossRefGoogle Scholar
  10. 10.
    H.H. Saber and M.S. El-Genk, Energy Convers. Manage. 48, 1383 (2007).CrossRefGoogle Scholar
  11. 11.
    E. Godlewska, K. Zawadzka, K. Mars, R. Mania, K. Wojciechowski, and A. Opoka, Oxid. Met. 74, 205 (2010).CrossRefGoogle Scholar
  12. 12.
    D. Zhao, M. Zuo, Z. Wang, X. Teng, and H. Geng, Appl. Surf. Sci. 305, 86 (2014).CrossRefGoogle Scholar
  13. 13.
    H. Dong, X. Li, Y. Tang, J. Zou, X. Huang, Y. Zhou, W. Jiang, G. Zhang, and L. Chen, J. Alloys Compd. 527, 247 (2012).CrossRefGoogle Scholar
  14. 14.
    H. Dong, X. Li, X. Huang, Y. Zhou, W. Jiang, and L. Chen, Ceram. Int. 39, 4551 (2013).CrossRefGoogle Scholar
  15. 15.
    X. Zhao, X. Shi, L. Chen, W. Zhang, S. Bai, Y. Pei, X. Li, and T. Goto, Appl. Phys. Lett. 89, 1325 (2006).Google Scholar
  16. 16.
    Z. Yao, X. Li, Y. Tang, and L. Chen, J. Electron. Mater. 44, 1890 (2015).CrossRefGoogle Scholar
  17. 17.
    J. Leszczynski, K. Wojciechowski, and A. Malecki, J. Therm. Anal. Calorim. 105, 211 (2011).CrossRefGoogle Scholar
  18. 18.
    D. Zhao, C. Tian, Y. Liu, C. Zhan, and L. Chen, J. Alloys Compd. 509, 3166 (2011).CrossRefGoogle Scholar
  19. 19.
    X. Xia, P. Qiu, X. Shi, X. Li, X. Huang, and L. Chen, J. Electron. Mater. 41, 2225 (2012).CrossRefGoogle Scholar
  20. 20.
    H. Natter and R. Hempelmann, Electrochim. Acta 49, 51 (2004).CrossRefGoogle Scholar
  21. 21.
    H. Okamoto, J. Phase Equilib. 14, 257 (1993).CrossRefGoogle Scholar
  22. 22.
    R. Arroyave, D. Shin, and Z.K. Liu, Acta Mater. 53, 1809 (2005).CrossRefGoogle Scholar
  23. 23.
    L. Battezzati, P. Pappalepore, F. Durbiano, and I. Gallino, Acta Mater. 47, 1901 (1999).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.School of Environmental and Materials EngineeringShanghai Polytechnic UniversityShanghaiChina
  2. 2.State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of CeramicsChinese Academy of SciencesShanghaiChina

Personalised recommendations