Advertisement

Sodium Doping Effect on Optical Permittivity, Band Gap Structure, Nonlinearity and Piezoelectric Properties of PZT Nano-colloids and Nanostructures

  • E. Koushki
  • J. Baedi
  • A. Tasbandi
Article
  • 7 Downloads

Abstract

In this research, effects of sodium atoms doping on optical properties of lead zirconate titanate (PZT) nanoparticles (NPs) are studied and compared with undoped particles. Analyses show formations of PZT nanostructures with dimensions below 30 nm. X-ray diffraction patterns show that the particle size increases and the intensity of the preferred direction decreases as the doping sodium atoms are used in the structure. Analyzing absorption spectra of the colloidal solutions shows doped particles are better absorbers at violet-green region of spectra. Also, it has been concluded that PZT NPs only have indirect optical band gap that is narrower for doped particles. Optical permittivity of the films has been compared using a numerical method and shows the prominent effect of doping on real and imaginary parts of permittivity. Also, z-scan experiments have been done to measure thermo-optical and nonlinear absorption coefficients of the nano-colloids using continue wave Nd-YAG laser illumination. Finally, sodium doping effects on piezoelectric properties of the samples are investigated using a Michelson interferometer.

Keywords

Piezoelectric PZT nanoparticles Michelson interferometer z-scan dispersion curve 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    T. Morita, Materials 3, 5236 (2010).CrossRefGoogle Scholar
  2. 2.
    K. Raju and P. Venugopal Reddy, Curr. Appl. Phys. 10, 31 (2010).CrossRefGoogle Scholar
  3. 3.
    W. Madhuri, M. Penchal Reddy, N. Rammanohar Reddy, K.V. Siva Kumar, and V.R.K. Murthy, J. Phys. D Appl. Phys. 42, 165007 (2007).CrossRefGoogle Scholar
  4. 4.
    M. Ghasemifard, S.M. Hosseini, M.M. Bagheri-Mohagheghi, and N. Shahtahmasbi, Physica E 41, 1701 (2009).CrossRefGoogle Scholar
  5. 5.
    A. Khorsand Zak and W.H. Abd. Majid, Ceram. Int. 36, 1905 (2010).CrossRefGoogle Scholar
  6. 6.
    M. Ghasemifard, S.M. Hosseini, A. Khorsand Zak, and GhH Khorrami, Physica E 41, 418 (2009).CrossRefGoogle Scholar
  7. 7.
    Y. Deng, L. Liu, Y. Cheng, C.W. Nan, and S.J. Zhao, Mater. Lett. 57, 1675 (2003).CrossRefGoogle Scholar
  8. 8.
    G.H. Khorrami, A. Khorsand Zak, and S.M. Banihashemian, Adv. Powder Technol. 25, 1319 (2004).CrossRefGoogle Scholar
  9. 9.
    V. Kalem, I. Cam, and M. Timucin, Ceram. Int. 37, 1265 (2011).CrossRefGoogle Scholar
  10. 10.
    G.H. Khorrami, A. Khorsand Zak, A. Kompany, and R. Yousefi, Ceram. Int. 38, 5683 (2012).CrossRefGoogle Scholar
  11. 11.
    I.A. Garduno, J.C. Alonso, M. Bizarro, R. Ortega, L. Rodriguez-Fernandez, and A. Ortiz, J. Cryst. Growth 312, 3276 (2010).CrossRefGoogle Scholar
  12. 12.
    W.L. Jang, Y.M. Lu, W.S. Hwang, and W.C. Chen, J. Eur. Ceram. Soc. 30, 503 (2010).CrossRefGoogle Scholar
  13. 13.
    D.K. Mahato and R.K. Chaudhary, J. Mater. Sci. Lett. 22, 1613 (2003).CrossRefGoogle Scholar
  14. 14.
    A. Bouzid, M. Gabbay, and G. Fantozzi, Defect Diffus. Forum 206, 147 (2002).CrossRefGoogle Scholar
  15. 15.
    E. Koushki, S.H. Mousavi, S.A. Jafari Mohammadi, M.H. Majles Ara, and P.W. deOliveira, Thin Solid Films 592, 81 (2015).CrossRefGoogle Scholar
  16. 16.
    E. Koushki, S.H. Mousavi, and J. Baedi, Optik 127, 4635 (2016).CrossRefGoogle Scholar
  17. 17.
    A. Monshi, M.R. Foroughi, and M.R. Monshi, World J. Nano Sci. Eng. 2, 154 (2012).CrossRefGoogle Scholar
  18. 18.
    Y.R. Park and K.J. Kim, J. Cryst. Growth 258, 380 (2003).CrossRefGoogle Scholar
  19. 19.
    C.S. Lee, K.A. Matori, S.H. Ab Aziz, H.M. Kamari, I. Ismail, and M.H. Mohd Zaid, Optik 136, 129 (2017).CrossRefGoogle Scholar
  20. 20.
    S. Lakshmana Perunal, P. Hemalatha, M. Alagara, and K. Navaneetha Pandiyaraj, Int. J. Chem. Phys. Sci. 4, 1 (2015).Google Scholar
  21. 21.
    R. Kripal and R.K. Srivastava, Spectro Chem. Acta part A 79, 1605 (2011).CrossRefGoogle Scholar
  22. 22.
    A. Tasbandi, E. Koushki, and H. Eshghi, Opt. Quant. Electron. 49, 124 (2017).CrossRefGoogle Scholar
  23. 23.
    H. Azimi Juybari, M.M. Bagheri-Mohagheghi, and M. Shokooh-Saremi, J. Alloys Compd. 509, 2770 (2011).CrossRefGoogle Scholar
  24. 24.
    J. Wei, Nonlinear Performance and Characterization Methods in Optics (New York: Nova Publisher, 2013), pp. 41–67.Google Scholar
  25. 25.
    S. Alikhani, H. Tajalli, and E. Koushki, Opt. Commun. 286, 318 (2013).CrossRefGoogle Scholar
  26. 26.
    Z. Huang, Q. Zhang, S. Corkovic, R.A. Dorey, F. Duval, G. Leighton, R. Wright, P. Kirby, and R.W. Whatmore, J. Electroceram. 17, 549 (2006).CrossRefGoogle Scholar
  27. 27.
    F.L. Pedrotti and L.S. Pedrotti, Introduction to Optics, 2nd ed. (Saddle River: Prentice Hall, 1993), pp. 225–230.Google Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  1. 1.Department of PhysicsHakim Sabzevari UniversitySabzevarIran

Personalised recommendations