Journal of Electronic Materials

, Volume 48, Issue 2, pp 1122–1132 | Cite as

Structural, Linear and Third Order Nonlinear Optical Properties of Sol-Gel Grown Ag-CdS Nanocrystalline Thin Films

  • Ziaul Raza KhanEmail author
  • Munirah
  • Mohd. Shkir
  • Abdullah S. Alshammari
  • V. Ganesh
  • S. AlFaify
  • M. Gandouzi


Pure and Ag doped CdS nanocrystalline films with different Ag doping concentrations were successfully grown on glass substrates by a sol-gel spin coating method. Ag doping was performed using silver acetate aqueous solution with 0.01, 0.02 and 0.03 M concentrations via ion exchange. The influences of Ag doping on structural, vibrational, morphological, linear and third order nonlinear optical properties of CdS nanocrystalline films were studied. The x-ray diffraction patterns of the films exhibited a broad peak centered at an angle 2θ = 26.5° along the (111) plane, which confirms the cubic structure and formation of nanocrystalline films. Raman spectra of films demonstrate a shift in longitudinal optical phonon vibrations as compared to the bulk counterpart. Pure CdS film shows high transmittance (83%) in the visible and near infrared (NIR) regions. With Ag doping, a significant red shift in the band edge and reduction in the transmittance of the films in visible and NIR regions were observed. However, the films doped with Ag showed appreciable transmittance in visible region for window layer applications. A significant effect on optical parameters such as absorption index, refractive index, and optical dielectric constant was observed after Ag doping. The nonlinear optical properties of films were enhanced with incorporation of Ag atoms into the CdS binary system. The values of nonlinear optical susceptibility χ(3) and refractive index n2 were found to increase with increasing Ag concentration and were estimated to be in the range of 2.92 × 10−10 − 1×10−7esu and 1.00 × 10−9 − 2.00 × 10−7esu, respectively. These values suggest that these films can be potential candidates for nonlinear optical device applications.


Ag-CdS structural properties Raman spectroscopy surface morphology optical properties 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



Z. R. Khan, gratefully acknowledge the support for this research work from Research Deanship (0150177), University of Hail, Saudi Arabia.

Conflict of interest

The authors declare that there is no conflict of interest in the current work.


  1. 1.
    H. Abdulelah, B. Ali, M.A. Mahdi, J.J. Hassan, H.F. Al-Taay, and P. Jennings, Phys. E: Low-Dimens. Syst. Nanostr. 90, 104 (2017).CrossRefGoogle Scholar
  2. 2.
    Y. Zhao, M. Yuan, Y. Chen, Y. Huang, J. Lian, S. Cao, H. Li, and L. Wu, Ceram. Int. 44, 2407 (2018).CrossRefGoogle Scholar
  3. 3.
    L.A. Raja, P. Thirumoorthy, A. Karthik, R. Subramanian, and V. Rajendran, J. Alloys Compd. 706, 470 (2017).CrossRefGoogle Scholar
  4. 4.
    D. Zhang, C. Li, S. Han, X. Liu, T. Tang, W. Jin, and C. Zhou, Appl. Phys. A Mater. Sci. Process. 76, 163 (2003).CrossRefGoogle Scholar
  5. 5.
    A. Pan, D. Liu, R. Liu, F. Wang, X. Zhu, and B. Zou, Small 1, 980 (2005).CrossRefGoogle Scholar
  6. 6.
    M. Sharma and S.K. Tripathi, Appl. Phys. A 113, 491 (2013).CrossRefGoogle Scholar
  7. 7.
    H.S. Kim and K.B. Yoon, Coord. Chem. Rev. 263, 239 (2014).CrossRefGoogle Scholar
  8. 8.
    L. Ma, X. Ai, and X. Wu, J. Alloys Compd. 691, 399 (2017).CrossRefGoogle Scholar
  9. 9.
    Z. Wei, Y. Wang, L. Ma, and X.S. Wu, Phys. B 525, 98 (2017).CrossRefGoogle Scholar
  10. 10.
    A. Rmili, F. Ouachtari, A. Bouaoud, A. Louardi, T. Chouki, B. Elidrissi, and H. Erguing, J. Alloys Compd. 557, 53 (2013).CrossRefGoogle Scholar
  11. 11.
    S. Butt, N.A. Shah, A. Nazir, Z. Ali, and A. Maqsood, J. Alloys Compd. 587, 582 (2014).CrossRefGoogle Scholar
  12. 12.
    M. Shaban, M. Mustafa, and A.M. El Sayed, Mat. Sci. Semicon. Proc. 56, 329 (2016).CrossRefGoogle Scholar
  13. 13.
    A. Nazir, A. Toma, N.A. Sha, S. Panaro, S. Butt, R.R. Sagar, W. Raja, K. Rasool, and A. Maqsood, J. Alloys Compd. 609, 40 (2014).CrossRefGoogle Scholar
  14. 14.
    X. Yu and Y. Wang, Opt. Express 22, 177 (2014).CrossRefGoogle Scholar
  15. 15.
    Y.H. Wang, Y.M. Wang, J.D. Lu, L.L. Ji, R.G. Zang, and R. Wang, Opt. Commun. 283, 486 (2010).CrossRefGoogle Scholar
  16. 16.
    H. Cheng, Y. Wang, H. Dai, J. Han, and X. Li, J. Phys. Chem. C 119, 3288 (2015).CrossRefGoogle Scholar
  17. 17.
    Z.R. Khan, M. Zulfequar, and M.S. Khan, Mater. Sci. Eng. B 174, 145 (2010).CrossRefGoogle Scholar
  18. 18.
    Munirah, M.S. Khan, A. Aziz, S.A. Rahman, and Z.R. Khan, Mat. Sci. Semicond. Proc. 16, 1894 (2013).CrossRefGoogle Scholar
  19. 19.
    N. Saxena, P. Kumar, and V. Gupta, J. Lumin. 186, 62 (2017).CrossRefGoogle Scholar
  20. 20.
    F.M. Amanullah, A.S. Alshammari, and A.M. Al-Dhafiri, Phys. Stat. Sol. (A) 202, 2474 (2005).CrossRefGoogle Scholar
  21. 21.
    M. Shkir and S. AlFaify, Sci. Rep. 7, 16091 (2017).CrossRefGoogle Scholar
  22. 22.
    M. Shkir, Z.R. Khan, M.S. Hamdy, H. Algarni, and S. AlFaify, Mater. Res. Exp. 5, 095032 (2018).CrossRefGoogle Scholar
  23. 23.
    Z.R. Khan, M. Zulfequar, and M.S. Khan, J. Mater. Sci. 46, 5412 (2011).CrossRefGoogle Scholar
  24. 24.
    M. Gilic, J. Trajic, N. Romevic, M. Romcevic, D.V. Timotijevic, G. Stanisic, and I.S. Yahia, Opt. Mater. 35, 1112 (2013).CrossRefGoogle Scholar
  25. 25.
    Z.R. Khan, M. Shkir, V. Ganesh, S. AlFaify, I.S. Yahia, and H.Y. Zahran, J. Electr. Mater. 47, 5386 (2018).CrossRefGoogle Scholar
  26. 26.
    M. Shkir, V. Ganesh, S. Alfaify, and I.S. Yahia, J. Mater. Sci.: Mater. Electron. 28, 10573 (2017).Google Scholar
  27. 27.
    M. Shkir, H. Abbas, and Z.R. Khan, J. Phys. Chem. Solids 73, 1309 (2012).CrossRefGoogle Scholar
  28. 28.
    M. Shkir, V. Ganesh, I.S. Yahia, and S. AlFaify, J. Mater. Sci.: Mater. Electron. 29, 15838 (2018).Google Scholar
  29. 29.
    M.A. Khalid and H.A. Jassem, Acta Phys Hung 73, 29 (1993).Google Scholar
  30. 30.
    V. Narasimman, V.S. Nagarethinam, K. Usharani, and A.R. Balu, Mater. Res. Innov. 22, 79 (2016).CrossRefGoogle Scholar
  31. 31.
    E.A. Tikhonov, V.A. Ivashkin, and A.K. Ljamec, J. Appl. Spectrosc. 79, 148 (2012).CrossRefGoogle Scholar
  32. 32.
    V. Ganesh, I.S. Yahia, S. Al-Faify, and M. Shkir, J. Phys. Chem. Sol. 100, 115 (2017).CrossRefGoogle Scholar
  33. 33.
    C. Lu, S. Ren, H. Shen, J. Liu, and Y. Wang, J. Vac. Sci. Technol., A 15, 2167 (1997).CrossRefGoogle Scholar
  34. 34.
    M.S. Kim, K.G. Yim, J.S. Son, and J.Y. Leem, Bull. Korean Chem. Soc. 33, 1235 (2012).CrossRefGoogle Scholar
  35. 35.
    H. Luth, Solid Surfaces, Interfaces and Thin Films, 4th ed. (Berlin: Springer, 2001).CrossRefGoogle Scholar
  36. 36.
    A.A. Ziabari and F.E. Ghodsi, Sol. Energy Mater. Sol. Cells 105, 249 (2012).CrossRefGoogle Scholar
  37. 37.
    Y. Sun, H. Xu, B. Da, S.F. Mao, and Z.J. Ding, Chin. J. Chem. Phys. 29, 663 (2016).CrossRefGoogle Scholar
  38. 38.
    N. Sharma, S. Sharma, A. Sarin, and R. Kumar, Opt. Mater. 51, 56 (2016).CrossRefGoogle Scholar
  39. 39.
    M. Frumar, J. Jedelsky, B. Frumarova, T. Wagner, M. Hrdlicka, and J. Non-Cryst, Solids 326, 399 (2003).Google Scholar
  40. 40.
    C. Wang, Phys. Rev. B 2, 569 (1970).Google Scholar
  41. 41.
    J. Wynne, Phys. Rev. Lett. 29, 650 (1972).CrossRefGoogle Scholar
  42. 42.
    H. Nasu and J.D. Mackenzie, Opt. Eng. 26, 262102 (1987).CrossRefGoogle Scholar
  43. 43.
    R. Adair, L. Chase, and S.A. Payne, Phys. Rev. B 39, 3337 (1989).CrossRefGoogle Scholar
  44. 44.
    M. Shkir, Mohd Taukeer Khan, V. Ganesh, I.S. Yahia, A. BakhtiarUl Haq, P.S. Almohammedi, S.R. Patil, and S.AlFaify Maidur, Opt. Laser Techn. 108, 609 (2018).CrossRefGoogle Scholar
  45. 45.
    J. Ren, B. Li, T. Wagner, H. Zeng, and G. Chen, Opt. Mater. 36, 911 (2014).CrossRefGoogle Scholar
  46. 46.
    R.T. Hart Jr., K.M. Ok, P.S. Halasyamani, and J.W. Zwanziger, Appl. Phys. Lett. 85, 938 (2004).Google Scholar
  47. 47.
    J. Wasylak, I.V. Kityk, and J. Kucharski, Phys. Status Solidi A 199, 515 (2003).CrossRefGoogle Scholar
  48. 48.
    M. Kazan, G. Guisbiers, S. Pereira, M.R. Correia, P. Masri, A. Bruyant, S. Volz, and P. Royer, J. Appl. Phys. 107, 083503 (2010).CrossRefGoogle Scholar
  49. 49.
    W.J. Tropf, M.E. Thomas, and T.J. Harris, Properties of crystals and glasses. Hand book of Optics, Vol. 2, ed. M. Bass, E.W.V. Stryland, D.R. Williams, and W.L. Wolfe (New York: McGraw-Hill Inc, 1995), p. 33.2–33.101.Google Scholar
  50. 50.
    K. Anshu and A. Sharma, Optik 127, 48 (2016).CrossRefGoogle Scholar
  51. 51.
    M. Shkir, M. Arif, V. Ganesh, M.A. Manthrammel, A. Singh, S.R. Maidur, P.S. Patil, I.S. Yahia, H. Algarni, and S. AlFaify, J. Mater. Res. 33, 3880 (2018).
  52. 52.
    M. Shkir, M. Arif, V. Ganesh, M.A. Manthrammel, A. Singh, I.S. Yahia, S.R. Maidur, P.S. Patil, and S. AlFaify, J. Mol. Struc. 1173, 375 (2018).CrossRefGoogle Scholar
  53. 53.
    M. Shkir, V. Ganesh, S. AlFaify, I.S. Yahia, and H.Y. Zahran, J. Mater. Sci.: Mater. Electron. 29, 6446 (2018).Google Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  • Ziaul Raza Khan
    • 1
    Email author
  • Munirah
    • 2
  • Mohd. Shkir
    • 3
  • Abdullah S. Alshammari
    • 1
  • V. Ganesh
    • 3
  • S. AlFaify
    • 3
  • M. Gandouzi
    • 1
  1. 1.Department of Physics, College of ScienceUniversity of HailHailSaudi Arabia
  2. 2.Department of PhysicsJamia Millia IslamiaNew DelhiIndia
  3. 3.Advanced Functional Materials and Optoelectronic Laboratory (AFMOL), Department of Physics, Faculty of ScienceKing Khalid UniversityAbhaSaudi Arabia

Personalised recommendations