Journal of Electronic Materials

, Volume 48, Issue 2, pp 1147–1152 | Cite as

Enhancement of Thermoelectric Performance of Sr1−xTi0.8Nb0.2O3 Ceramics by Introducing Sr Vacancies

  • Yufei Chen
  • Jian LiuEmail author
  • Yi Li
  • Xinmiao Zhang
  • Xuejin Wang
  • Wenbin Su
  • Jichao Li
  • Chunlei Wang


Donor-substituted strontium titanate is known as one of the best high-performance n-type oxide thermoelectric materials. In this work, Sr-deficient Sr1−xTi0.8Nb0.2O3 ceramics (x = 0, 0.01, 0.02, 0.03 and 0.04) were synthesized by solid state reaction, and the microstructural and thermoelectric properties were investigated to clarify the effects of Sr vacancies. By introducing Sr vacancies, the absolute Seebeck coefficient and electrical conductivity are enhanced simultaneously as compared with those of the sample without Sr vacancy, and thus the values of power factor are improved obviously. Although thermal conductivity increases after introducing Sr vacancies, thermoelectric performance of Sr1−xTi0.8Nb0.2O3 ceramic is enhanced notably because of the significantly enhanced power factor, and the figure of merit zT at 1073 K increases from 0.017 (of the sample x = 0) to 0.236 (of the sample x = 0.03).


SrTiO3 ceramics thermoelectric properties Sr vacancies 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The authors acknowledge the financial support of the National Basic Research Program of China (Grant No. 2013CB632506) and National Natural Science Foundation of China (Grant Nos. 51202132, 11374186 and 51231007).


  1. 1.
    G.J. Snyder and E.S. Toberer, Nat. Mater. 7, 105 (2007).CrossRefGoogle Scholar
  2. 2.
    Y.J. Kim, I.D. Blum, J.Q. He, M.G. Kanatzidis, V.P. Dravid, and D.N. Seidman, JOM 66, 2288 (2014).CrossRefGoogle Scholar
  3. 3.
    L.D. Zhao, D. Berardan, Y.L. Pei, C. Byl, L.P. Gaudart, and N. Dragoe, Appl. Phys. Lett. 97, 092118 (2010).CrossRefGoogle Scholar
  4. 4.
    Y. Liu, L.D. Zhao, Y.C. Zhu, Y.C. Liu, F. Li, M.J. Yu, D.B. Liu, W. Xu, Y.H. Lin, and C.W. Nan, Adv. Energy Mater. 6, 1502423 (2016).CrossRefGoogle Scholar
  5. 5.
    V. Pele, C. Barreteau, D. Berardan, L.D. Zhao, and N. Dragoe, J. Solid State Chem. 203, 187 (2013).CrossRefGoogle Scholar
  6. 6.
    Y. Xiao, Y.L. Pei, C. Chang, X. Zhang, X. Tan, X.X. Ye, S.K. Gong, Y.H. Lin, J.Q. He, and L.D. Zhao, J. Solid State Chem. 239, 178 (2016).CrossRefGoogle Scholar
  7. 7.
    Y. He, T.S. Zhang, X. Shi, S.H. Wei, and L.D. Chen, NPG Asia Mater. 7, e210 (2015).CrossRefGoogle Scholar
  8. 8.
    Y. He, T. Day, T. Zhang, H. Liu, X. Shi, L. Chen, and G.J. Snyder, Adv. Mater. 26, 3974 (2014).CrossRefGoogle Scholar
  9. 9.
    L. Pan, D. Berardan, and N. Dragoe, J. Am. Chem. Soc. 135, 4914 (2013).CrossRefGoogle Scholar
  10. 10.
    Z. Wu, J. Li, X. Li, M. Zhu, K.C. Wu, X.T. Tao, B.B. Huang, and S.Q. Xia, Chem. Mater. 28, 6917 (2016).CrossRefGoogle Scholar
  11. 11.
    L.D. Zhao, S.H. Lo, Y. Zhang, H. Sun, G. Tan, C. Uher, C. Wolverton, V.P. Dravid, and M.G. Kanatzidis, Nature 508, 373 (2014).CrossRefGoogle Scholar
  12. 12.
    G.J. Tan, L.D. Zhao, S.Q. Hao, J.Q. He, Y.L. Pei, H. Chi, H. Wang, S.K. Gong, H.B. Xu, and V.P. Dravid, Science 351, 141 (2016).CrossRefGoogle Scholar
  13. 13.
    A. Assoud, N. Soheilnia, and H. Kleinke, J. Solid State Chem. 178, 1087 (2005).CrossRefGoogle Scholar
  14. 14.
    J. Liu, C.L. Wang, W.B. Su, H.C. Wang, P. Zheng, J.C. Li, J.L. Zhang, and L.M. Mei, Appl. Phys. Lett. 95, 162110 (2009).CrossRefGoogle Scholar
  15. 15.
    R. Liu, L.J. Gao, L.J. Li, S.J. Zhai, J.L. Wang, G.S. Fu, and S.F. Wang, Acta Phys. Sin. 64, 218101 (2015).Google Scholar
  16. 16.
    Z. Li, C. Xiao, S. Fan, Y. Deng, W. Zhang, B. Ye, and Y. Xie, J. Am. Chem. Soc. 137, 6587 (2015).CrossRefGoogle Scholar
  17. 17.
    S. Sun, P. Li, S. Liang, and Z. Yang, Nanoscale 9, 11357 (2017).CrossRefGoogle Scholar
  18. 18.
    L.L. Zhao, X.L. Wang, F.Y. Fei, J.Y. Wang, Z.X. Cheng, S.X. Dou, J. Wang, and G.J. Snyder, J. Mater. Chem. A 3, 9432 (2015).CrossRefGoogle Scholar
  19. 19.
    G. Duvjir, T. Min, T.T. Ly, T. Kim, A.T. Duong, S. Cho, S.H. Rhim, J. Lee, and J. Kim, Appl. Phys. Lett. 110, 262106 (2017).CrossRefGoogle Scholar
  20. 20.
    D. Wu, L.J. Wu, D.S. He, L.D. Zhao, W. Li, M.H. Wu, M. Jin, J.T. Xu, J. Jiang, L. Huang, Y.M. Zhu, M.G. Kanatzidis, and J.Q. He, Nano Energy 35, 321 (2017).CrossRefGoogle Scholar
  21. 21.
    Z.L. Lu, H. Zhang, W. Lei, D.C. Sinclair, and I.M. Reaney, Chem. Mater. 28, 925 (2016).CrossRefGoogle Scholar
  22. 22.
    D. Srivastava, C. Norman, F. Azough, M.C. Schafer, E. Guilmeau, D. Kepaptsoglou, Q.M. Ramasse, G. Nicotra, and R. Freer, Phys. Chem. Chem. Phys. 18, 26475 (2016).CrossRefGoogle Scholar
  23. 23.
    J. Han, Q. Sun, and Y. Song, J. Alloys Compd. 705, 22 (2017).CrossRefGoogle Scholar
  24. 24.
    A.V. Kovalevsky, A.A. Yaremchenko, S. Populoh, A. Weidenkaff, and J.R. Frade, J. Phys. Chem. C 118, 4596 (2014).CrossRefGoogle Scholar
  25. 25.
    H. Kawakami, M. Saito, H. Takemoto, H. Yamamura, Y. Isoda, and Y. Shinohara, Mater. Trans. 54, 1818 (2013).CrossRefGoogle Scholar
  26. 26.
    I. Pallecchi, F. Telesio, D.F. Li, S. Gariglio, J.M. Triscone, A. Filippetti, P. Delugas, V. Fiorentini, and D. Marre, Nat. Commun. 6, 6678 (2015).CrossRefGoogle Scholar
  27. 27.
    H.S. Kim, Z.M. Gibbs, Y.L. Tang, H. Wang, and G.J. Snyder, APL Mater. 3, 041506 (2015).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  1. 1.School of PhysicsShandong UniversityJinanPeople’s Republic of China

Personalised recommendations