Journal of Electronic Materials

, Volume 48, Issue 2, pp 1079–1090 | Cite as

Effects of α-Fe2O3 Additions on Assembly Reliability of Electroplated Sn-Based Solder Cap on Cu Pillar Bump During Thermal Cycling

  • Lijun Liu
  • Xiuchen ZhaoEmail author
  • Ping Chen
  • Ying Liu
  • Yong Wang
  • Weiwei Chen
  • Jiaqi Wu


Composite solder alloys reinforced by different nominal concentrations of α-Fe2O3 nanoparticles are examined and the performance of corresponding copper (Cu) pillar bumps during thermal cycling (TC) tests is investigated. Firstly, the spherical α- Fe2O3 nanoparticles (50 nm in diameter) were successfully prepared by a chemical method. Then, the Sn-xFe2O3 composite solders with different concentrations of α-Fe2O3 were deposited on the surface of Cu pillar bumps by electroplating. During electroplating, the concentration of α-Fe2O3 nanoparticles in the plating solution ranged from 0 g/L to 0.04 g/L. TC tests of fabricated joints were conducted from − 65°C to 150°C for different numbers of cycles. The microstructure, evolution of interfacial intermetallic compounds (IMCs) and the shear strength of the solder joints were investigated following TC tests. Cross-sectional analysis indicates that adding α-Fe2O3 nanoparticles can remarkably suppress the overgrowth of the interfacial IMCs. Compared to the strength of joint without nanoparticles after the TC test, the strength of joints increases with the addition of α-Fe2O3 and an optimum nominal concentration of 0.032 g/L in the electroplating solution was identified.


α-Fe2O3 nanoparticles Cu pillar bump intermetallic compound thermal cycling 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The authors gratefully acknowledge the support received from the China Aerospace Science and Technology Innovation Fund (2016) and the Natural Science Foundation of China (Grant: 51401024).


  1. 1.
    K.M. Chen and T.S. Lin, J. Mater. Sci-Mater. Electron. 21, 278–284 (2010).CrossRefGoogle Scholar
  2. 2.
    K. Zeng and K.N. Tu, Mater. Sci. Eng. R 38, 55–105 (2002).CrossRefGoogle Scholar
  3. 3.
    Z. Kornain, A. Jalar, N. Amin, R. Rasid, and C.S. Foong, Am. J. Eng. App. Sci. 3, 83–89 (2010).CrossRefGoogle Scholar
  4. 4.
    A. Bao, L. Zhao, Y.Y. Sun, M. Han, G. Yeap, S. Bezuk, P. Holmes, C. Alcira, X.F. Zhang, and K. Lee. ECTC 64, 47–49 (2014).Google Scholar
  5. 5.
    M.A.J. van Gils, O. van der Sluis, G.Q. Zhang, J.H.J. Janssen, and R.M.J. Voncken, Microelectron. Reliab. 47, 179–186 (2007).CrossRefGoogle Scholar
  6. 6.
    Y.H. Ko, M.S. Kim, J.H. Bang, T.S. Kim, and C.W. Lee, J. Electron. Mater. 44, 2458–2466 (2015).CrossRefGoogle Scholar
  7. 7.
    B. Ebersberger and C. Lee, ECTC 58, 59–66 (2008).Google Scholar
  8. 8.
    M.W. Lee, J.Y. Kom, J. D. Kim, and C.H. Lee, ECTC 60, 1623–1630 (2010).Google Scholar
  9. 9.
    J.-W. Nah, M. Gaynes, E. Perfecto, and C. Feger. ECTC 62, 1233–1238 (2012).Google Scholar
  10. 10.
    J.W. Nah, J.O. Suh, K.N. Tu, Y.S. Wook, R.V. Srinivasa, K. Vaidyanathan, and H. Fay, J. Appl. Phys. 100, 123513 (2006).CrossRefGoogle Scholar
  11. 11.
    A. Syed, K. Dhandapani, R. Moody, L. Nicholls, and M. Kelly, ECTC 61, 332–339 (2011).Google Scholar
  12. 12.
    J.C. Lin, Y. Qin, and J. Woertink, J. Electron. Mater. 43, 4134–4145 (2014).CrossRefGoogle Scholar
  13. 13.
    F. Kuechenmeister, D. Breuer, H. Geisler, J. Paul, C. Shah, K.V. Machani, S. Kosgalwies, R. Agarwal, and S. Gao, ECTC 14, 430–436 (2012).Google Scholar
  14. 14.
    G.T. Wang, P.S. Ho, and S. Groothuis, Microelectron. Reliab. 45, 1079–1093 (2005).CrossRefGoogle Scholar
  15. 15.
    C.C. Lee, T.L. Chou, C.C. Chiu, C.C. Hsia, and K.N. Chiang, Microelectron. Eng. 85, 2079–2084 (2008).CrossRefGoogle Scholar
  16. 16.
    F.X. Che, J.K. Lin, K.Y. Au, H.Y. Hsiao, and X.W. Zhang, Pack. Man. Technol. 5, 1273–1283 (2015).Google Scholar
  17. 17.
    V. Solberg and V. Oganesian, CPMT Symposium Japan 1–4 (2010).Google Scholar
  18. 18.
    Y. Gu, X.C. Zhao, Y. Li, Y. Liu, Y. Wang, and Z.Y. Li, J. Alloys Compd. 627, 39–47 (2015).CrossRefGoogle Scholar
  19. 19.
    W.S. Rasband, U.S. Natutestional Institute of Health, Bethesda, Maryland, USA, 1997–2012.
  20. 20.
    X.Y. Li, F.H. Li, F. Guo, and Y.W. Shi, J. Electron. Mater. 40, 51–61 (2011).CrossRefGoogle Scholar
  21. 21.
    H.K. Kim and K.N. Tu, Phys. Rev. B. 53, 16027–16034 (1996).CrossRefGoogle Scholar
  22. 22.
    Y. Gu, X.C. Zhao, Y. Li, Y. Liu, Y. Wang, and Z.Y. Li, J. Alloys Compd. 627, 39–47 (2015).CrossRefGoogle Scholar
  23. 23.
    J.O. Suh, K.N. Tu, and N. Tamura, Appl. Phys. Lett. 91, 051907 (2007).CrossRefGoogle Scholar
  24. 24.
    Y. Tang, Y.C. Pan, and G.Y. Li, J. Mater. Sci.-Mater. Electron. 24, 1587–1594 (2012).CrossRefGoogle Scholar
  25. 25.
    A.A. El-Daly, A. Fawzy, S.F. Mansour, and M.J. Younis, Mater. Sci. Eng. 578, 62–71 (2013).CrossRefGoogle Scholar
  26. 26.
    C.W. Tan, Y.C. Chan, B. Leung, and H.D. Liu, Opt. Lasers Eng. 46, 75–82 (2008).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  • Lijun Liu
    • 1
  • Xiuchen Zhao
    • 1
    Email author
  • Ping Chen
    • 1
    • 2
  • Ying Liu
    • 1
  • Yong Wang
    • 1
    • 3
  • Weiwei Chen
    • 1
  • Jiaqi Wu
    • 4
  1. 1.The School of Materials Science and EngineeringBeijing Institute of TechnologyBeijingPeople’s Republic of China
  2. 2.Institute of ElectricsChinese Academy of SciencesBeijingPeople’s Republic of China
  3. 3.Beijing Microelectronics Technology InstituteBeijingPeople’s Republic of China
  4. 4.Department of Electrical Engineering and Computer ScienceUniversity of California IrvineIrvineUSA

Personalised recommendations