Journal of Electronic Materials

, Volume 48, Issue 2, pp 1054–1065 | Cite as

Carbon Fiber/Polyaniline as a High Performance Electrode for a Symmetrical Supercapacitor

  • Sowmya Holla
  • M. SelvakumarEmail author


The single and multilayered electrode materials having carbon fiber and polyaniline were prepared. The variation of morphological and electrochemical properties of electrode materials was studied in three different electrolytes. The electrode materials were prepared by taking stainless steel as the substrate using the potentiodynamic technique. The electrode materials were characterized using scanning electron microscopy, Fourier transform infrared spectroscopy and N2 adsorption/desorption measurement. The supercapacitor characteristics of these electrode materials were analyzed using cyclic voltammetry, ac impedance, and charge–discharge cycling techniques. It was found that multilayered electrode material resulted in a specific capacitance value of 350 F/g during charge–discharge cycling studies.

Graphical Abstract


Supercapacitor polyaniline carbon fiber potentiodynamic multilayer 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



We acknowledge the support rendered by Manipal Academy of Higher Education for providing the required lab facility.

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    G.A. Snook, P. Kao, and A.S. Best, J. Power Sources 196, 1 (2011).CrossRefGoogle Scholar
  2. 2.
    Y. Zhao, H. Wei, M. Arowo, X. Yan, W. Wu, J. Chen, Y. Wang, and Z. Guo, Phys. Chem. Chem. Phys. 17, 1498 (2015).CrossRefGoogle Scholar
  3. 3.
    L. Lu, D. Xing, Y. Xie, K.S. Teh, B. Zhang, S. Chen, and Y. Tang, Mater. Des. 112, 383 (2016).CrossRefGoogle Scholar
  4. 4.
    A. Choudhury, J.-H. Kim, K.-S. Yang, and D.-J. Yang, Electrochim. Acta 213, 400 (2016).CrossRefGoogle Scholar
  5. 5.
    P. Xu, W. Zeng, S. Luo, C. Ling, J. Xiao, A. Zhou, Y. Sun, and K. Liao, Electrochim. Acta 241, 41 (2017).CrossRefGoogle Scholar
  6. 6.
    F. Markoulidis, C. Lei, and C. Lekakou, Electrochim. Acta 249, 122 (2017).CrossRefGoogle Scholar
  7. 7.
    N. Iqbal, X. Wang, A.A. Babar, J. Yu, and B. Ding, J. Colloid Interface Sci. 476, 87 (2016).CrossRefGoogle Scholar
  8. 8.
    X. Dong, L. Wang, D. Wang, C. Li, and J. Jin, Langmuir 28, 293 (2012).CrossRefGoogle Scholar
  9. 9.
    A.K. Sarker and J.-D. Hong, Langmuir 28, 12637 (2012).CrossRefGoogle Scholar
  10. 10.
    M. Khalid and A.M. Honorato, J. Energy Chem. 27, 866 (2018).Google Scholar
  11. 11.
    D. Yang, W. Ni, J. Cheng, Z. Wang, C. Li, Y. Zhang, and B. Wang, Mater. Today Energy 5, 196 (2017).CrossRefGoogle Scholar
  12. 12.
    N. Su, Nanoscale Res. Lett. 10, 301 (2015).CrossRefGoogle Scholar
  13. 13.
    C.-C. Hu and C.-C. Wang, J. Power Sources 125, 299 (2004).CrossRefGoogle Scholar
  14. 14.
    Y. Ma, C. Hou, H. Zhang, M. Qiao, Y. Chen, H. Zhang, Q. Zhang, and Z. Guo, J. Mater. Chem. A 5, 14041 (2017).CrossRefGoogle Scholar
  15. 15.
    F. Ke, J. Tang, S. Guang, and H. Xu, RSC Adv. 6, 14712 (2016).CrossRefGoogle Scholar
  16. 16.
    Sowmya and M. Selvakumar, Int. J. Hydrog. Energy 43, 4067 (2018).CrossRefGoogle Scholar
  17. 17.
    Sowmya, Y.N. Sudhakar, and M. Selvakumar, Ionics 22, 1729 (2016).CrossRefGoogle Scholar
  18. 18.
    X.-L. Song, J.-X. Guo, M.-X. Guo, D.-Z. Jia, Z.-P. Sun, and L.-X. Wang, Electrochim. Acta 206, 337 (2016).CrossRefGoogle Scholar
  19. 19.
    M. Khalid, M.A. Tumelero, I.S. Brandt, V.C. Zoldan, J.J.S. Acu, and A.A. Pasa, Indian J. Mater. Sci. 2013, 718304 (2013).Google Scholar
  20. 20.
    S.L. Patil, M.A. Chougule, S.G. Pawar, S. Sen, and V.B. Patil, Soft Nanosci. Lett. 2, 19817 (2012).Google Scholar
  21. 21.
    S.T. Senthilkumar, R.K. Selvan, Y.S. Lee, and J.S. Melo, J. Mater. Chem. A 1, 1086 (2013).CrossRefGoogle Scholar
  22. 22.
    X. Yu, J. Lu, C. Zhan, R. Lv, Q. Liang, Z.-H. Huang, W. Shen, and F. Kang, Electrochim. Acta 182, 908 (2015).CrossRefGoogle Scholar
  23. 23.
    E. Raymundo-Piñero, K. Kierzek, J. Machnikowski, and F. Béguin, Carbon 44, 2498 (2006).CrossRefGoogle Scholar
  24. 24.
    S. Patra and N. Munichandraiah, J. Appl. Polym. Sci. 106, 1160 (2007).CrossRefGoogle Scholar
  25. 25.
    E. Ismar, T. Karazehir, M. Ates, and A.S. Sarac, J. Appl. Polym. Sci. 135, 45723 (2018).CrossRefGoogle Scholar
  26. 26.
    K. Torchala, K. Kierzek, and J. Machnikowski, Electrochim. Acta 86, 260 (2012).CrossRefGoogle Scholar
  27. 27.
    D. Aradilla, F. Estrany, and C. Alemán, J. Phys. Chem. C 115, 8430 (2011).CrossRefGoogle Scholar
  28. 28.
    G.M. Do Nascimento, Spectroscopy of Polyaniline Nanofibers, ed. A. Kumar (London: InTechOpen, 2010), p. 349Google Scholar
  29. 29.
    B.E. Conway, Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications (New York: Kluwer Academic/Plenum Press, 1999).CrossRefGoogle Scholar
  30. 30.
    D.K. Bhat and M. Selva Kumar, J. Mater. Sci. 42, 8158 (2007).CrossRefGoogle Scholar
  31. 31.
    S.K. Simotwo, C. DelRe, and V. Kalra, ACS Appl. Mater. Interfaces 8, 21261 (2016).CrossRefGoogle Scholar
  32. 32.
    I.M. De la Fuente Salas, Y.N. Sudhakar, and M. Selvakumar, Appl. Surf. Sci. 296, 195 (2014).CrossRefGoogle Scholar
  33. 33.
    F. Estrany, D. Aradilla, R. Oliver, and C. Alemán, Eur. Polym. J. 43, 1876 (2007).CrossRefGoogle Scholar
  34. 34.
    S. Holla and M. Selvakumar, Macromol. Chem. Phys. 219, 1800213 (2018)Google Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  1. 1.Department of Chemistry, Manipal Institute of TechnologyManipal Academy of Higher EducationManipalIndia

Personalised recommendations