Journal of Electronic Materials

, Volume 48, Issue 2, pp 1310–1317 | Cite as

Low-Temperature Cu-Cu Bonding Process Based on the Sn-Cu Multilayer and Self-Propagating Reaction Joining

  • Jinhu Fan
  • Tielin Shi
  • Zirong TangEmail author
  • Bo Gong
  • Junjie Li
  • Jie Huang
  • Tianxiang Li


Transient liquid phase bonding can be realized at a relatively low temperature through building an intermetallic interconnection. A self-propagating reaction joint can achieve a low temperature bond by confining the heat at the bonding interface and reduce the thermal effect on other components. In this work, a Sn-Cu alternating multilayer was combined with an Al-Ni self-propagating reaction joint to develop a highly efficient low-temperature Cu-Cu hybrid bonding process. The Sn-Cu alternating multilayer was directly prepared on the Cu substrates by an alternating electroplating process. The Al-Ni multilayer film was sandwiched between two Cu substrates under a pressure of 5 MPa and ignited with a 15-V spark at room temperature. Cu-Cu bonds with three different Sn/Cu thickness ratios were studied. It was found that the Cu6Sn5 layer within the three Sn layers had different thicknesses and decreased with increasing distance from the heat source of the Al-Ni nanofoil. The thickness difference between adjacent Cu6Sn5 layers at first decreased with the increasing Sn/Cu thickness ratio in these three groups and then remained constant. The shear strength of the bonds varied with the thickness of Cu6Sn5 layer and achieved a high shear strength with a Sn/Cu thickness ratio of 1.6 μm/1 μm, where fracture occurred within the Cu6Sn5 layer near the Cu substrate. The combination of the Sn-Cu multilayer and self-propagating reaction joining process can achieve a good low-temperature bond between Cu substrates with an optimized Sn/Cu thickness ratio, which has a strong influence on the quality of bonds, the Cu6Sn5 morphology, and shear strength.


Low-temperature Cu-Cu bonding self-propagating reaction joining Sn-Cu alternating multilayer Cu6Sn5 IMC layer shear strength 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The authors are grateful for the financial support from the National Key Basic Research Special Fund of China [Grant No. 2015CB057205]; and the Program for Changjiang Scholars and Innovative Research Team in University [Grant No. IRT13017].


  1. 1.
    C.T. Ko and K.N. Chen, Microelectron. Reliab. 52, 302 (2012).Google Scholar
  2. 2.
    C.S. Tan, L. Peng, J. Fan, H. Li, and S. Gao, IEEE Trans. Device Mater. Reliab. 12, 194 (2012).Google Scholar
  3. 3.
    S.E. Kim, Microelectron. Eng. 137, 158 (2015).Google Scholar
  4. 4.
    K.E. Aasmundtveit, T.A. Tollefsen, T.T. Luu, A. Duan, K. Wang, and N. Hoivik, in EMPC Proceedings (2013), pp. 1–6Google Scholar
  5. 5.
    H.A. Yang, M.C. Wu, and W.L. Fang, J. Micromech. Microeng. 15, 394 (2005).Google Scholar
  6. 6.
    D.Q. Yua, C.K. Lee, L.L. Yan, M.L. Thew, and J.H. Lau, J. Alloys Compd. 485, 444 (2009).Google Scholar
  7. 7.
    J. Fana, D.F. Lim, L. Peng, K.H. Li, and C.S. Tan, Electrochem. Solid State Lett. 14, 470 (2011).Google Scholar
  8. 8.
    O.A. Ojo, O.A. Olatunji, and M.C. Chaturvedi, Philos. Mag. Lett. 97, 419 (2017).Google Scholar
  9. 9.
    A.H.M.E. Rahman and M.N. Cavalli, Mater. Sci. Eng. A 545, 6 (2012).Google Scholar
  10. 10.
    G.O. Iii Cook and C.D. Sorensen, J. Mater. Sci. 46, 5305 (2011).Google Scholar
  11. 11.
    A.N. AlHazaa, M.A. Shar, A.M. Atieh, and H. Nishikawa, Metals 8, 60 (2018).Google Scholar
  12. 12.
    W.C. Welch and K. Najafi, in Transducers’ Conference Proceedings (2007), pp. 1327–1328.Google Scholar
  13. 13.
    O.A. Ojo and O. Aina, Metall. Mater. Trans. A 49, 1481 (2018).Google Scholar
  14. 14.
    W.F. Gale and D.A. Butts. (2004)
  15. 15.
    M. Brincker, S. Söhl, R. Eisele, and V.N. Popok, J. Microelectron. Relia. 76, 378 (2017).Google Scholar
  16. 16.
    W.C. Welch and K. Najafi, in TRANSDUCERS Conference Proceedings (2005), pp. 1327–1328Google Scholar
  17. 17.
    N.S. Nobeen, R. Imade, B.H. Lee, E.J.R. Phua, C.C. Wong, C.L. Gan, and Z. Chen, in EPTC Proceedings (2013), pp. 647–652Google Scholar
  18. 18.
    T.H. Wang, H. Lee, C.M. Chen, M.G. Chen, C.C. Hu, Y.J. Chen, and R.H. Horng, Microelectron. Reliab. 63, 68 (2016).Google Scholar
  19. 19.
    T.A. Tollefsen, A. Larsson, O.M. Løvvik, and K. Aasmundtveit, Metall. Mater. Trans. B 43, 397 (2012).Google Scholar
  20. 20.
    K.N. Tu, Solder Bond Technology: Materials, Properties, and Reliability (New York: Springer, 2007), pp. 111–113.Google Scholar
  21. 21.
    N. Hoivik, K. Wang, K. Aasmundtveit, G. Salomonsenl, A. Lapadatu, G. Kittilsland, and B. Stark, in ESTC Proceedings (2010), pp. 1–5Google Scholar
  22. 22.
    S. Lemettre, S. Seok, N. Isac, J. Moulin, and A. Bosseboeuf, Microsyst. Technol. 23, 3893 (2017).Google Scholar
  23. 23.
    F. Brem, C. Liu, and D. Raik, in ECTC Proceedings (2012), pp. 1–5Google Scholar
  24. 24.
    S. Bader, W. Gust, and H. Hieber, Acta Metal. Mater. 43, 329 (1995).Google Scholar
  25. 25.
    K.E. Aasmundtveit, T.T. Luu, A. S. B. Vardøy, T.A. Tollefsen, K. Wang, and N. Hoivik, in ESTC Proceedings (2014), pp. 1–6Google Scholar
  26. 26.
    B.S. Lee, S.K. Hyun, and J.W. Yoon, J. Mater. Sci. Mater. Electron. 28, 7827 (2017).Google Scholar
  27. 27.
    S. Marauska, M. Claus, T. Lisec, and B. Wagner, Microsyst. Technol. 19, 1119 (2012).Google Scholar
  28. 28.
    M. Yang, Y. Cao, S. Joo, H.T. Chen, X. Ma, and M.Y. Li, J. Alloys Compd. 582, 688 (2014).Google Scholar
  29. 29.
    A.Z.M.S. Rahman, P.Y. Chia, and A. Haseeb, Mater. Lett. 147, 50 (2015).Google Scholar
  30. 30.
    T.T. Luu, A. Duan, K.E. Aasmundtveit, and N. Hoivik, J. Electron. Mater. 42, 3582 (2013).Google Scholar
  31. 31.
    H. Liu, K. Wang, K.E. Aasmundtveit, and N. Hoivik, J. Electron. Mater. 41, 2453 (2012).Google Scholar
  32. 32.
    M. Brincker, S. Söhl, R. Eisele, and V.N. Popok, Microelectron. Reliab. 76, 378 (2017).Google Scholar
  33. 33.
    A. Duan, T.T. Luu, K. Wang, K. Aasmundtveit, and N. Hoivik, J. Micromech. Microeng. 25, 097001 (2015).Google Scholar
  34. 34.
    F. Song and S.W.R. Lee, in ECTC Proceedings (2006), pp. 1196–2003Google Scholar
  35. 35.
    T.C. Huang, V. Smet, and S. Kawamoto, in ECTC Proceedings (2015), pp. 1377–1384Google Scholar
  36. 36.
    C. Flötgen, M. Pawlak, E. Pabo, H.J. van de Wiel, G.R. Hayes, and V. Dragoi. (2013)
  37. 37.
    N.S. Bosco and F.W. Zok, Acta Mater. 52, 2965 (2004).Google Scholar
  38. 38.
    P.Y. Chia, A.S.M.A. Haseeb, and S.H. Mannan, Materials 9, 430 (2016).Google Scholar
  39. 39.
    M.K. Faiz, K. Bansho, T. Suga, T. Miyashita, and M. Yoshida, J. Mater. Sci. Mater. Electron. 28, 16433 (2017).Google Scholar
  40. 40.
    M. Char and A. Kar, Nanotechnol. Lett. 2, 1 (2018).Google Scholar
  41. 41.
    C. Honrao, T.C. Huang, M. Kobayashi, V. Smet, P.M. Raj, and R. Tummala, in ECTC Proceedings (2014), pp. 1160–1165Google Scholar
  42. 42.
    R. An, H. Ma, H. Li, Z. Zheng, and C.Q. Wang, in EPTC Proceedings (2014), pp. 980–984Google Scholar
  43. 43.
    X. Qiu and J. Wang, Sens. Actuator A-Phys. 141, 476 (2008).Google Scholar
  44. 44.
    D.P. Adams, Thin Solid Films 644, 589 (2015).Google Scholar
  45. 45.
    J. Wang, E. Besnoin, A. Duckham, O.M. Knio, M. Powers, M. Whitener, and T.P. Weihs, Appl. Phys. Lett. 83, 3987 (2003).Google Scholar
  46. 46.
    N.A. Manesh, K.R. Coffey, and R. Kumar, in IMECE Conference Proceedings (2007), pp. 1189–1197Google Scholar
  47. 47.
    B. Boettge, F. Schippela, F. Naumann, L. Bertholda, G. Lorenza, R. Gerbacha, J. Bagdahnc, and M. Petzolda, ECS Trans. 50, 215 (2013).Google Scholar
  48. 48.
    J. Braeuer and T. Gessner, J. Micromech. Microeng. 24, 115002 (2014).Google Scholar
  49. 49.
    W.B. Zhu, F.S. Wu, B.H. Wang, E. Hou, P. Wang, C.Q. Liu, and W.S. Xia, J. Micromech. Microeng. 128, 24 (2014).Google Scholar
  50. 50.
    J.H. Fan, T.L. Shi, X.X. Tao, T.Y. Zhou, J.J. Li, Z.R. Tang, G.L. Liao, and X. Yu, J. Alloys Compd. 735, 1189 (2017).Google Scholar
  51. 51.
    S. Fukumoto, A. Tanaka, M. Matsushima, and K. Fujimoto, in National Meeting of Japan Welding Society Proceeding (2010), pp. 48–48Google Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  • Jinhu Fan
    • 1
  • Tielin Shi
    • 1
  • Zirong Tang
    • 1
    • 2
    Email author
  • Bo Gong
    • 1
  • Junjie Li
    • 1
  • Jie Huang
    • 1
  • Tianxiang Li
    • 1
  1. 1.State Key Laboratory of Digital Manufacturing Equipment and TechnologyHuazhong University of Science and TechnologyWuhanPeople’s Republic of China
  2. 2.Wuhan National Laboratory for OptoelectronicsHuazhong University of Science and TechnologyWuhanPeople’s Republic of China

Personalised recommendations