Advertisement

Journal of Electronic Materials

, Volume 48, Issue 2, pp 951–963 | Cite as

Improving the Electrochemical Performance of Carbon Anodes Derived from Marine Biomass by Using Ionic-Liquid-Based Hybrid Electrolyte for LIBs

  • Pejman SalimiEmail author
  • Kasra Askari
  • Omid Norouzi
  • Saeedeh Kamali
Article
  • 12 Downloads

Abstract

The electrochemical performance of Li-ion batteries (LIBs) including a marine-biochar electrode and ionic-liquid-based hybrid electrolyte has been investigated. The formation of micro/macro-ordered porosity in the biochar structure after pyrolysis provides a three-dimensional (3D) olive-shaped architecture for facile diffusion of electroactive species within the electrode. Three imidazolium-based ionic liquids, namely 1-ethyl-3-methylimidazolium hexafluorophosphate (EMImPF6), 1-ethyl-2,3 dimethylimidazolium hexafluorophosphate (EDImPF6), and 1,3-dimethoxy-2-methylimidazolium hexafluorophosphate [(OM)2MImPF6], were used to fabricate hybrid electrolytes and investigate the effect of the imidazolium cation structure on the safety and electrochemical performance of marine-biomass-based LIBs at various temperatures. Electrochemical characterization was carried out using galvanostatic charge–discharge measurements and electrochemical impedance spectroscopy (EIS). It was found that mixing 40 wt.% (OM)2MImPF6 IL with the organic electrolyte (modified electrolyte) remarkably improved the capacity, cyclability, and coulombic efficiency (CE) of the marine-biochar electrode. After 100 charge–discharge cycles, the capacity retention of the cell containing 40 wt.% (OM)2MImPF6 IL was 85%, 84%, and 81% at 25°C, 45°C, and 65°C, respectively, whereas capacity fading of 35%, 45%, and 68% was observed for the cell without modified electrolyte in this condition. According to EIS analysis, Li+ transfer at the electrode–electrolyte interface was significantly improved in the presence of the modified hybrid electrolyte compared with the other cells. Moreover, the results of thermal and scanning electron microscopy (SEM) analyses proved that this IL could be an appropriate electrolyte to improve the thermal stability and the solid electrolyte interphase (SEI) formation on the marine-biochar surface, respectively.

Keywords

Ionic liquid imidazolium marine biochar electrochemical performance elevated temperature 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

The authors wish to thank Dr. Ali Eftekhari from Queen’s University Belfast and Dr. Ondrej Masek from UKBRC for important information on electrochemical analysis and biochar characterization.

Supplementary material

11664_2018_6826_MOESM1_ESM.pdf (327 kb)
Supplementary material 1 (PDF 326 kb)

References

  1. 1.
    X. Xiao, S. Agusti, F. Lin, K. Li, Y. Pan, Y. Yu, Y. Zheng, J. Wu, and C.M. Duarte, Sci. Rep. 7, 46613 (2017).CrossRefGoogle Scholar
  2. 2.
    O. Norouzi, S. Jafarian, F. Safari, A. Tavasoli, and B. Nejati, Bioresour. Technol. 219, 643 (2016).CrossRefGoogle Scholar
  3. 3.
    O. Norouzi, A. Tavasoli, S. Jafarian, and S. Esmailpour, Bioresour. Technol. 243, 1 (2017).CrossRefGoogle Scholar
  4. 4.
    F. Safari, N. Javani, and Z. Yumurtaci, Int. J. Hydrog. Energy 43, 1071 (2017).CrossRefGoogle Scholar
  5. 5.
    F. Safari, O. Norouzi, and A. Tavasoli, Bioresour. Technol. 222, 232 (2016).CrossRefGoogle Scholar
  6. 6.
    P. Salimi, S. Javadian, O. Norouzi, and H. Gharibi, Environ. Sci. Pollut. Res. 24, 27974 (2017).CrossRefGoogle Scholar
  7. 7.
    S.E.M. Pourhosseini, O. Norouzi, P. Salimi, and H.R. Naderi, ACS Sustain. Chem. Eng. 6, 4746 (2018).CrossRefGoogle Scholar
  8. 8.
    K. Xu, Chem. Rev. 114, 11503 (2014).CrossRefGoogle Scholar
  9. 9.
    G.A. Elia, U. Ulissi, F. Mueller, J. Reiter, N. Tsiouvaras, Y.K. Sun, B. Scrosati, S. Passerini, and J. Hassoun, Chem. A Eur. J. 22, 6808 (2016).CrossRefGoogle Scholar
  10. 10.
    X. Cao, X. He, J. Wang, H. Liu, S. Röser, B.R. Rad, M. Evertz, B. Streipert, J. Li, R. Wagner, M. Winter, and I. Cekic-Laskovic, ACS Appl. Mater. Interfaces 8, 25971 (2016).CrossRefGoogle Scholar
  11. 11.
    P. Ramadass, B.S. Haran, R.E. White, and B.N. Popov, J. Power Sources 112, 606 (2002).CrossRefGoogle Scholar
  12. 12.
    A. Lewandowski and A. Świderska-Mocek, J. Power Sources 194, 601 (2009).CrossRefGoogle Scholar
  13. 13.
    T.C. Nagaiah, S. Tharamani, C. Nagaiah, S.N. Chavan, A. Tiwari, and D. Mandal, Phys. Chem. Chem. Phys. 18, 16116 (2016).CrossRefGoogle Scholar
  14. 14.
    M. Moreno, E. Simonetti, G.B. Appetecchi, M. Carewska, M. Montanino, G.-T. Kim, N. Loeffler, and S. Passerini, J. Electrochem. Soc. 164, A6026 (2017).CrossRefGoogle Scholar
  15. 15.
    N. Nakatani, K. Kishida, and K. Nakagawa, J. Electrochem. Soc. 165, 1621 (2018).Google Scholar
  16. 16.
    E. Kowsari and M.R. Chirani, Carbon N. Y. 118, 384 (2017).CrossRefGoogle Scholar
  17. 17.
    A. Ehsani, H. Mohammad Shiri, E. Kowsari, R. Safari, J. Torabian, and S. Hajghani, J. Colloid Interface Sci. 490, 91 (2017).CrossRefGoogle Scholar
  18. 18.
    A. Eftekhari, Y. Liu, and P. Chen, J. Power Sources 334, 221 (2016).CrossRefGoogle Scholar
  19. 19.
    M. Armand, F. Endres, D.R. Macfarlane, H. Ohno, and B. Scrosati, Nat. Publ. Gr. 8, 621 (2009).Google Scholar
  20. 20.
    W. Tian, Q. Gao, Y. Tan, and Z. Li, Carbon N. Y. 119, 287 (2017).CrossRefGoogle Scholar
  21. 21.
    J. Jiang, J. Electrochem. Soc. 164, H5043 (2017).CrossRefGoogle Scholar
  22. 22.
    Y. Wang and W.H. Zhong, ChemElectroChem 2, 22 (2015).CrossRefGoogle Scholar
  23. 23.
    S. Theivaprakasam, D.R. MacFarlane, and S. Mitra, Electrochim. Acta 180, 737 (2015).CrossRefGoogle Scholar
  24. 24.
    L. Lombardo, S. Brutti, M.A. Navarra, S. Panero, and P. Reale, J. Power Sources 227, 8 (2013).CrossRefGoogle Scholar
  25. 25.
    H. Matsumoto, H. Sakaebe, K. Tatsumi, M. Kikuta, E. Ishiko, and M. Kono, J. Power Sources 160, 1308 (2006).CrossRefGoogle Scholar
  26. 26.
    X.-G. Sun, C. Liao, N. Shao, J.R. Bell, B. Guo, H. Luo, D. Jiang, and S. Dai, J. Power Sources 237, 5 (2013).CrossRefGoogle Scholar
  27. 27.
    H. Kim, D.Q. Nguyen, H.W. Bae, J.S. Lee, B.W. Cho, H.S. Kim, M. Cheong, and H. Lee, Electrochem. Commun. 10, 1761 (2008).CrossRefGoogle Scholar
  28. 28.
    S. Ferrari, E. Quartarone, C. Tomasi, D. Ravelli, S. Protti, M. Fagnoni, and P. Mustarelli, J. Power Sources 235, 142 (2013).CrossRefGoogle Scholar
  29. 29.
    S. Seki, Y. Kobayashi, H. Miyashiro, Y. Ohno, A. Usami, Y. Mita, N. Kihira, M. Watanabe, and N. Terada, J. Phys. Chem. B 110, 10228 (2006).CrossRefGoogle Scholar
  30. 30.
    Y. Jin, S. Fang, M. Chai, L. Yang, K. Tachibana, and S.I. Hirano, J. Power Sources 226, 210 (2013).CrossRefGoogle Scholar
  31. 31.
    M. Shimizu, H. Usui, K. Matsumoto, T. Nokami, T. Itoh, and H. Sakaguchi, J. Electrochem. Soc. 161, A1765 (2014).CrossRefGoogle Scholar
  32. 32.
    S.N. Chavan, A. Tiwari, T.C. Nagaiah, and D. Mandal, Phys. Chem. Chem. Phys. 18, 16116 (2016).CrossRefGoogle Scholar
  33. 33.
    A. Guerfi, M. Dontigny, P. Charest, M. Petitclerc, M. Lagacé, A. Vijh, and K. Zaghib, J. Power Sources 195, 845 (2010).CrossRefGoogle Scholar
  34. 34.
    K.R. Thines, E.C. Abdullah, M. Ruthiraan, N.M. Mubarak, and M. Tripathi, J. Anal. Appl. Pyrolysis 121, 240 (2016).CrossRefGoogle Scholar
  35. 35.
    S.E.M. Pourhosseini, O. Norouzi, and H.R. Naderi, Biomass Bioenergy 107, 287 (2017).CrossRefGoogle Scholar
  36. 36.
    K. Gao, Q. Niu, Q. Tang, Y. Guo, and L. Wang, J. Electron. Mater. 47, 337 (2018).CrossRefGoogle Scholar
  37. 37.
    W. Yu, H. Wang, S. Liu, N. Mao, X. Liu, J. Shi, W. Liu, S. Chen, and X. Wang, J. Mater. Chem. A 4, 5973 (2016).CrossRefGoogle Scholar
  38. 38.
    Y. Zhang, X. Guo, Y. Yao, F. Wu, C. Zhang, R. Chen, J. Lu, and K. Amine, ACS Appl. Mater. Interfaces 8, 2905 (2016).CrossRefGoogle Scholar
  39. 39.
    M. Hariharan, N. Varghese, A.B. Cherian, P.V. Sreenivasan, and J. Paul, Int. J. Sci. Res. Publ. 4, 1 (2014).Google Scholar
  40. 40.
    S. Li and J. Mao, J. Electron. Mater. 47, 5410 (2018).CrossRefGoogle Scholar
  41. 41.
    C. Zheng, X. Zhou, H. Cao, G. Wang, and Z. Liu, J. Power Sources 258, 290 (2014).CrossRefGoogle Scholar
  42. 42.
    Z.J. Hu, Y. Cui, S. Liu, Y. Yuan, and H.W. Gao, Environ. Sci. Pollut. Res. 19, 1237 (2012).CrossRefGoogle Scholar
  43. 43.
    O. Fromm, A. Heckmann, U.C. Rodehorst, J. Frerichs, D. Becker, M. Winter, and T. Placke, Carbon N. Y. 128, 147 (2018).CrossRefGoogle Scholar
  44. 44.
    X. Gu, Y. Wang, C. Lai, J. Qiu, S. Li, Y. Hou, W. Martens, N. Mahmood, and S. Zhang, Nano Res. 8, 129 (2014).CrossRefGoogle Scholar
  45. 45.
    Z. Hu, Y. Zheng, F. Yan, B. Xiao, and S. Liu, Energy 52, 119 (2013).CrossRefGoogle Scholar
  46. 46.
    S.A. El-Khodary, G.M. El-Enany, M. El-Okr, and M. Ibrahim, Electrochim. Acta 150, 269 (2014).CrossRefGoogle Scholar
  47. 47.
    J. Zhao, L. Zhao, K. Chihara, S. Okada, J.I. Yamaki, S. Matsumoto, S. Kuze, and K. Nakane, J. Power Sources 244, 752 (2013).CrossRefGoogle Scholar
  48. 48.
    A. Eftekhari, Microporous Mesoporous Mater. 243, 355 (2017).CrossRefGoogle Scholar
  49. 49.
    M. Agostini, U. Ulissi, D. Di Lecce, Y. Ahiara, S. Ito, and J. Hassoun, Energy Technol. 3, 632 (2015).CrossRefGoogle Scholar
  50. 50.
    J.A. Choi, D.W. Kim, Y.S. Bae, S.W. Song, S.H. Hong, and S.M. Lee, Electrochim. Acta 56, 9818 (2011).CrossRefGoogle Scholar
  51. 51.
    J. Patra, C.-H. Wang, T.-C. Lee, N. Wongittharom, Y.-C. Lin, G.T.-K. Fey, S.B. Majumder, C.-T. Hsieh, and J.-K. Chang, RSC Adv. 5, 10682 (2015).Google Scholar
  52. 52.
    E. Markevich, V. Baranchugov, and D. Aurbach, Electrochem. Commun. 8, 1331 (2006).CrossRefGoogle Scholar
  53. 53.
    K. Leung, J. Phys. Chem. C 117, 1539 (2013).Google Scholar
  54. 54.
    D.M. Piper, T. Evans, K. Leung, T. Watkins, J. Olson, S.C. Kim, S.S. Han, V. Bhat, K.H. Oh, D.A. Buttry, and S.H. Lee, Nat. Commun. 6, 1 (2015).CrossRefGoogle Scholar
  55. 55.
    C. Wang, A.J. Appleby, and F.E. Little, J. Electroanal. Chem. 497, 33 (2001).CrossRefGoogle Scholar
  56. 56.
    B. Liu, L. Zhu, E. Han, and H. Xu, J. Electron. Mater. 47, 5118 (2018).CrossRefGoogle Scholar
  57. 57.
    F. Yang, D. Wang, Y. Zhao, K.L. Tsui, and S.J. Bae, Energy 145, 486 (2018).CrossRefGoogle Scholar
  58. 58.
    S. Javadian, J. Kakemam, H. Gharibi, and H. Kashani, Int. J. Hydrog. Energy 42, 13136 (2017).CrossRefGoogle Scholar
  59. 59.
    C. Ding, Y. Zeng, L. Cao, L. Zhao, and Y. Zhang, J. Mater. Chem. A 4, 5898 (2016).CrossRefGoogle Scholar
  60. 60.
    Y. Li, C. Li, H. Qi, K. Yu, and C. Liang, Chem. Phys. 506, 10 (2018).CrossRefGoogle Scholar
  61. 61.
    K. Yu, J. Li, H. Qi, and C. Liang, Diam. Relat. Mater. 47, 337 (2018).Google Scholar
  62. 62.
    A. Hardiansyah, E.R. Chaldun, B.W. Nuryadin, A.K. Fikriyyah, A. Subhan, M. Ghozali, and B.S. Purwasasmita, J. Electron. Mater. 47, 4028 (2018).Google Scholar
  63. 63.
    R.R. Gaddam, D. Yang, R. Narayan, K. Raju, N.A. Kumar, and X.S. Zhao, Nano Energy 26, 346 (2016).CrossRefGoogle Scholar
  64. 64.
    M. Lin, W.-G. Yang, J.-E. Hong, R.-G. Oh, and K.-S. Ryu, T. E. Society, 59, 27 (2014).Google Scholar
  65. 65.
    Y. Li, F. Wang, J. Liang, X. Hu, and K. Yu, New J. Chem. 40, 325 (2016).CrossRefGoogle Scholar
  66. 66.
    J. Jiang, J. Zhu, W. Ai, Z. Fan, X. Shen, C. Zou, J. Liu, H. Zhang, and T. Yu, Energy Environ. Sci. 7, 2670 (2014).CrossRefGoogle Scholar
  67. 67.
    W. Lv, F. Wen, J. Xiang, J. Zhao, L. Li, L. Wang, Z. Liu, and Y. Tian, Electrochim. Acta 176, 533 (2015).CrossRefGoogle Scholar
  68. 68.
    L. Tao, Y. Huang, X. Yang, Y. Zheng, C. Liu, M. Di, and Z. Zheng, RSC Adv. 8, 7102 (2018).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  • Pejman Salimi
    • 1
    Email author
  • Kasra Askari
    • 2
  • Omid Norouzi
    • 3
  • Saeedeh Kamali
    • 2
  1. 1.Department of Physical Chemistry, Faculty of ScienceTarbiat Modares UniversityTehranIran
  2. 2.Department of ChemistryIsfahan University of TechnologyIsfahanIran
  3. 3.Department of EngineeringUniversity of PerugiaPerugiaItaly

Personalised recommendations