Advertisement

Defect-Based Magnetism in Reduced Graphene Oxide-CeO2 Nanocomposites

  • Kamarajan Thiyagarajan
  • Munisamy Muralidharan
  • Kandasamy Sivakumar
Article
  • 7 Downloads

Abstract

CeO2 nanocrystals were grown on reduced graphene oxide (rGO) as nanocomposites via in situ reduction of GO in the presence of cerium nitrate, pursued by hydrothermal treatment. Structural studies confirmed the formation of nanocomposites, which reveal a strong electrostatic interaction between rGO sheets and CeO2. High-resolution transmission electron microscopy images showed that CeO2 nanocrystals with an average size ∼ 10 nm were decorated on the rGO sheets. Chemical composition, mixed valence state and oxygen vacancies of samples were observed using x-ray photoemission spectra. Photoluminescence emission in the visible region also confirmed the existence of defects like oxygen vacancies on the surface of CeO2. The magnetization value of nanocomposites contributes both ferromagnetism at low field and diamagnetism at high field. The role of rGO sheets act as the shell and stabilize oxygen vacancies of CeO2, in which the p orbital of carbon is involved in spin-polarized charge transfer with oxygen vacancies of CeO2.

Keywords

Hydrothermal method rGO-CeO2 nanocomposite room temperature ferromagnetism oxygen vacancy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

The authors acknowledge the Sophisticated Analytical Instrumentation Facility (SAIF), Indian Institute of Technology (IITM), Madras, for support on characterization of samples.

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    S.A. Wolf, D.D. Awschalom, R.A. Buhrman, J.M. Daughton, S.V. Molnar, M.L. Roukes, A.Y. Chtchelkanova, and D.M. Treger, Science 294, 1488 (2001).CrossRefGoogle Scholar
  2. 2.
    S.B. Ogale, Adv. Mater. 22, 3125 (2010).CrossRefGoogle Scholar
  3. 3.
    K.S. Ranjith, P. Saravanan, S.H. Chen, C.L. Dong, C.L. Chen, S.Y. Chen, K. Asokan, and R.T. Rajendra Kumar, J. Phys. Chem. C 118, 27037 (2014).CrossRefGoogle Scholar
  4. 4.
    A. Thurber, K.M. Reddy, V. Shutthanandan, M.H. Engelhard, C. Wang, J. Hays, and A. Punnoose, Phys. Rev. B 76, 165206 (2007).CrossRefGoogle Scholar
  5. 5.
    G. Srinet, R. Kumar, and V. Sajal, J. Appl. Phys. 114, 033912 (2013).CrossRefGoogle Scholar
  6. 6.
    A. Sundaresan, R. Bhargavi, N. Rangarajan, U. Siddesh, and R.N.C. Rao, Phys. Rev. B 74, 161306 (2006).CrossRefGoogle Scholar
  7. 7.
    M.Y. Ge, H. Wang, E.Z. Liu, J.F. Liu, J.Z. Jiang, Y.K. Li, Z.A. Xu, and H.Y. Li, Appl. Phys. Lett. 93, 062505 (2008).CrossRefGoogle Scholar
  8. 8.
    H.X. Mai, L.D. Sun, Y.W. Zhang, R. Si, W. Feng, H.P. Zhang, H.C. Liu, and C.H. Yan, J. Phys. Chem. B 109, 24380 (2005).CrossRefGoogle Scholar
  9. 9.
    M. Li, S. Ge, W. Qiao, L. Zhang, Y. Zuo, and S. Yan, Appl. Phys. Lett. 94, 152511 (2009).CrossRefGoogle Scholar
  10. 10.
    R.K. Singhal, P. Kumari, A. Samariya, S. Kumar, S.C. Sharma, Y.T. Xing, and E.B. Saitovitch, Appl. Phys. Lett. 97, 172503 (2010).CrossRefGoogle Scholar
  11. 11.
    S.Y. Chen, C.H. Tsai, M.Z. Huang, D.C. Yan, T.W. Huang, A. Gloter, C.L. Chen, H.J. Lin, C.T. Chen, and C.L. Dong, J. Phys. Chem. C 116, 8707 (2012).CrossRefGoogle Scholar
  12. 12.
    F. Akbar, M. Kolahdouz, S. Larimian, B. Radfar, and H.H. Radamson, J. Mater. Sci. Mater. Electron. 26, 4347 (2015).CrossRefGoogle Scholar
  13. 13.
    Y. Si and E.T. Samulski, Nano Lett. 8, 1679 (2008).CrossRefGoogle Scholar
  14. 14.
    A. Prakash, K.S. Misra, and D. Bahadur, Nanotechnology 24, 095705 (2013).CrossRefGoogle Scholar
  15. 15.
    K. Thiyagarajan, M. Muralidharan, and K. Sivakumar, J. Mater. Sci. Mater. Electron. 29, 7442 (2018).CrossRefGoogle Scholar
  16. 16.
    M. Bonilla, S. Kolekar, Y. Ma, H.C. Diaz, V. Kalappattil, R. Das, T. Eggers, H.R. Gutierrez, M.H. Phan, and M. Batzill, Nat. Nanotechnol. 13, 289 (2018).CrossRefGoogle Scholar
  17. 17.
    K. Thiyagarajan and K. Sivakumar, J. Mater. Sci. 52, 8084 (2017).CrossRefGoogle Scholar
  18. 18.
    Z. Sun, X. Yang, C. Wang, T. Yao, L. Cai, W. Yan, Y. Jiang, F. Hu, J. He, Z. Pan, Q. Liu, and S. Wei, ACS Nano 8, 10589 (2014).CrossRefGoogle Scholar
  19. 19.
    C. Sun, H. Li, H. Zhang, Z. Wang, and L. Chen, Nanotechnology 16, 1454 (2005).CrossRefGoogle Scholar
  20. 20.
    L. Jiang, M. Yao, B. Liu, Q. Li, R. Liu, Z. Yao, S. Lu, W. Cui, X. Hua, B. Zou, T. Cui, and B. Liu, CrystEngComm 15, 3739 (2013).CrossRefGoogle Scholar
  21. 21.
    Z. Ji, X. Shen, M. Li, H. Zhou, H. Zhou, G. Zhu, and K. Chen, Nanotechnology 24, 115603 (2013).CrossRefGoogle Scholar
  22. 22.
    A.S. Dezfuli, M.R. Ganjali, P. Norouzi, and F. Faridbod, J. Mater. Chem. B 3, 2362 (2015).CrossRefGoogle Scholar
  23. 23.
    M. Srivastava, A.K. Das, P. Khanra, M.E. Uddin, N.H. Kim, and J.H. Lee, J. Mater. Chem. A 1, 9792 (2013).CrossRefGoogle Scholar
  24. 24.
    L. Jiang, M. Yao, B. Liu, Q. Li, R. Liu, H. Lu, C. Gong, B. Zou, T. Cui, and B. Liu, J. Phys. Chem. C 116, 11741 (2012).CrossRefGoogle Scholar
  25. 25.
    F. Meng, C. Zhang, Z. Fan, J. Gong, A. Li, Z. Ding, H. Tang, M. Zhang, M. Zhang, and G. Wu, J. Alloy. Compd. 647, 1013 (2015).CrossRefGoogle Scholar
  26. 26.
    D. Joung, V. Singh, S. Park, A. Schulte, S. Seal, and S.I. Khondarker, J. Phys. Chem. C 115, 24494 (2011).CrossRefGoogle Scholar
  27. 27.
    G.H. Jaffari, A. Imrana, M. Bahc, A. Ali, A.S. Bhatti, U.S. Qurashi, and S.I. Shah, Appl. Surf. Sci. 396, 547 (2017).CrossRefGoogle Scholar
  28. 28.
    S. Askrabic, Z.D. Dohcevic-Mitrovic, V.D. Araujo, G. Ionita, M.M. de Lima Jr., and A. Cantarero, J. Phys. D Appl. Phys. 46, 495306 (2013).CrossRefGoogle Scholar
  29. 29.
    V. Fernandes, P. Schio, A.J.A. de Oliveira, W. Aortiz, P. Fichtner, L. Amaral, I.L. Graff, J. Varalda, N. Mattoso, W.H. Schreiner, and D.H. Mosca, J. Phys. Condens. Matter 22, 216004 (2010).CrossRefGoogle Scholar
  30. 30.
    S. Kumar, M. Srivastava, J. Singh, S. Layek, M. Yashpal, A. Materny, and A.K. Ojha, AIP Adv. 5, 027109 (2015).CrossRefGoogle Scholar
  31. 31.
    X. Niu and Y. Liu, Appl. Phys. A 123, 236 (2017).CrossRefGoogle Scholar
  32. 32.
    F. Meng, C. Zhang, Q. Bo, and Q. Zhang, Mater. Lett. 99, 5 (2013).CrossRefGoogle Scholar
  33. 33.
    L. Wang and F. Meng, Mater. Res. Bull. 48, 3492 (2013).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  • Kamarajan Thiyagarajan
    • 1
  • Munisamy Muralidharan
    • 2
  • Kandasamy Sivakumar
    • 1
  1. 1.Department of PhysicsAnna UniversityChennaiIndia
  2. 2.Department of Nuclear PhysicsUniversity of MadrasChennaiIndia

Personalised recommendations