Advertisement

Journal of Electronic Materials

, Volume 48, Issue 2, pp 1235–1242 | Cite as

Resonant Tunneling Diode by Means of Compound Armchair Boron/Nitride and Graphene Nanoribbons

  • Arash Yazdanpanah GoharriziEmail author
Article
  • 9 Downloads

Abstract

The band gap of armchair graphene nanoribbons (AGNRs) can be modulated by replacing the carbon atoms with boron/nitride (BN) atoms to produce the compound nanoribbons, while the width of ribbons remains constant. By introducing BN doping atoms in the proper positions along the ribbon length, a double-barrier quantum-well structure is constructed. Consequently, negative differential resistance properties can be obtained by a combination of armchair BN nanoribbons (ABNNRs) and AGNRs as the compound ABNxGyNRs, in which x and y denote the number of BN and C atoms in the ribbon width, respectively. The proposed resonant tunneling diode (RTD), called an armchair BN graphene nanoribbon resonant tunneling diode (ABNGNR-RTD), is investigated in three different platforms including W, S, and H shapes. The numerical tight-binding model along with non-equilibrium Green’s function formalism is taken into account to study the electronic properties of the proposed RTD. The performance of the ABNGNR-RTD is examined in terms of device characteristics such as peak-to-valley ratio (PVR) and power dissipation. Based on the presented results, the performance of H-shaped devices is better than those of the other two cases in terms of PVR and power dissipation. In addition, the electronic properties of ABNGNR-RTDs can be modified by varying the relative width of ABNNRs with respect to AGNRs.

Keywords

Armchair graphene nanoribbons boron/nitride doping negative differential resistance non-equilibrium green’s function formalism resonant tunneling diodes tight-binding model 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. Esaki, Phys. Rev. 109, 603 (1958).CrossRefGoogle Scholar
  2. 2.
    N. Balkan, B. Ridley, and A. Vickers, Negative Differential Resistance and Instabilities in 2-D Semiconductors (Berlin: Springer, 2012).Google Scholar
  3. 3.
    L. Chen, Z. Hu, A. Zhao, B. Wang, Y. Luo, J. Yang, and J. Hou, Phys. Rev. Lett. 99, 146803 (2007).CrossRefGoogle Scholar
  4. 4.
    M. Galperin, M.A. Ratner, and A. Nitzan, Nano Lett. 5, 125 (2005).CrossRefGoogle Scholar
  5. 5.
    H. Mizuta and T. Tanoue, The Physics and Applications of Resonant Tunnelling Diodes (Cambridge: Cambridge University Press, 2006).Google Scholar
  6. 6.
    S. Suzuki, M. Asada, A. Teranishi, H. Sugiyama, and H. Yokoyama, Appl. Phys. Lett. 97, 242102 (2010).CrossRefGoogle Scholar
  7. 7.
    L.L. Chang, E. Mendez, and C. Tejedor, Resonant Tunneling in Semiconductors: Physics and Applications (Berlin: Springer, 2012).Google Scholar
  8. 8.
    J. Gaskell, L. Eaves, K. Novoselov, A. Mishchenko, A. Geim, T. Fromhold, and M. Greenaway, Appl. Phys. Lett. 107, 103105 (2015).CrossRefGoogle Scholar
  9. 9.
    T. Rakshit, G.-C. Liang, A.W. Ghosh, and S. Datta, Nano Lett. 4, 1803 (2004).CrossRefGoogle Scholar
  10. 10.
    R. Tsu and L. Esaki, Appl. Phys. Lett. 22, 562 (1973).CrossRefGoogle Scholar
  11. 11.
    L. Britnell, R. Gorbachev, A. Geim, L. Ponomarenko, A. Mishchenko, M. Greenaway, T. Fromhold, K. Novoselov, and L. Eaves, Nat. Commun. 4, 1794 (2013).CrossRefGoogle Scholar
  12. 12.
    J.M. Pereira Jr, P. Vasilopoulos, and F. Peeters, Appl. Phys. Lett. 90, 132122 (2007).CrossRefGoogle Scholar
  13. 13.
    T. Palacios, Nat. Nanotechnol. 6, 464 (2011).CrossRefGoogle Scholar
  14. 14.
    R. Van Noorden, Moving Towards a Graphene World (London: Nature Publishing Group, 2006).CrossRefGoogle Scholar
  15. 15.
    Y. Lin and J.W. Connell, Nanoscale 4, 6908 (2012).CrossRefGoogle Scholar
  16. 16.
    G. Fiori, F. Bonaccorso, G. Iannaccone, T. Palacios, D. Neumaier, A. Seabaugh, S.K. Banerjee, and L. Colombo, Nat. Nanotechnol. 9, 768 (2014).CrossRefGoogle Scholar
  17. 17.
    A.K. Geim and K.S. Novoselov, Nat. Mater. 6, 183 (2007).CrossRefGoogle Scholar
  18. 18.
    C. Thelander, P. Agarwal, S. Brongersma, J. Eymery, L.-F. Feiner, A. Forchel, M. Scheffler, W. Riess, B. Ohlsson, and U. Gösele, Mater. Today 9, 28 (2006).CrossRefGoogle Scholar
  19. 19.
    M. Zoghi, A.Y. Goharrizi, and M. Saremi, J. Electron. Mater. 46, 340 (2017).CrossRefGoogle Scholar
  20. 20.
    A. Mishchenko, J. Tu, Y. Cao, R. Gorbachev, J. Wallbank, M. Greenaway, V. Morozov, S. Morozov, M. Zhu, and S. Wong, Nat. Nanotechnol. 9, 808 (2014).CrossRefGoogle Scholar
  21. 21.
    Y. Song, H.-C. Wu, and Y. Guo, Appl. Phys. Lett. 102, 093118 (2013).CrossRefGoogle Scholar
  22. 22.
    H. Fang, R.-Z. Wang, S.-Y. Chen, M. Yan, X.-M. Song, and B. Wang, Appl. Phys. Lett. 98, 082108 (2011).CrossRefGoogle Scholar
  23. 23.
    A.Y. Goharrizi, M. Zoghi, and M. Saremi, IEEE Trans. Electron Devices 63, 3761 (2016).CrossRefGoogle Scholar
  24. 24.
    V.H. Nguyen, F. Mazzamuto, A. Bournel, and P. Dollfus, J. Phys. D Appl. Phys. 45, 325104 (2012).CrossRefGoogle Scholar
  25. 25.
    Y. Zhao, Z. Wan, X. Xu, S. Patil, U. Hetmaniuk, and M. Anantram, Sci. Rep. 5, 10712 (2015).CrossRefGoogle Scholar
  26. 26.
    B. Fallahazad, K. Lee, S. Kang, J. Xue, S. Larentis, C. Corbet, K. Kim, H.C. Movva, T. Taniguchi, and K. Watanabe, Nano Lett. 15, 428 (2014).CrossRefGoogle Scholar
  27. 27.
    Y.-W. Son, M.L. Cohen, and S.G. Louie, Phys. Rev. Lett. 97, 216803 (2006).CrossRefGoogle Scholar
  28. 28.
    H. Teong, K.-T. Lam, S.B. Khalid, and G. Liang, J. Appl. Phys. 105, 084317 (2009).CrossRefGoogle Scholar
  29. 29.
    H. Teong, K.-T. Lam, and G. Liang, Jpn. J. Appl. Phys. 48, 04C156 (2009).CrossRefGoogle Scholar
  30. 30.
    L. Ci, L. Song, C. Jin, D. Jariwala, D. Wu, Y. Li, A. Srivastava, Z. Wang, K. Storr, and L. Balicas, Nat. Mater. 9, 430 (2010).CrossRefGoogle Scholar
  31. 31.
    Y. Liu, X. Wu, Y. Zhao, X.C. Zeng, and J. Yang, J. Phys. Chem. C 115, 9442 (2011).CrossRefGoogle Scholar
  32. 32.
    Y. Ding, Y. Wang, and J. Ni, Appl. Phys. Lett. 95, 123105 (2009).CrossRefGoogle Scholar
  33. 33.
    G. Seol and J. Guo, Appl. Phys. Lett. 98, 143107 (2011).CrossRefGoogle Scholar
  34. 34.
    Y. Gao, Y. Zhang, P. Chen, Y. Li, M. Liu, T. Gao, D. Ma, Y. Chen, Z. Cheng, and X. Qiu, Nano Lett. 13, 3439 (2013).CrossRefGoogle Scholar
  35. 35.
    Z. Liu, L. Ma, G. Shi, W. Zhou, Y. Gong, S. Lei, X. Yang, J. Zhang, J. Yu, and K.P. Hackenberg, Nat. Nanotechnol. 8, 119 (2013).CrossRefGoogle Scholar
  36. 36.
    R. Zhao, J. Wang, M. Yang, Z. Liu, and Z. Liu, J. Phys. Chem. C 116, 21098 (2012).CrossRefGoogle Scholar
  37. 37.
    M. Anantram and A. Svizhenko, IEEE Trans. Electron Devices 54, 2100 (2007).CrossRefGoogle Scholar
  38. 38.
    A.Y. Goharrizi, M. Pourfath, M. Fathipour, and H. Kosina, IEEE Trans. Electron Devices 59, 3527 (2012).CrossRefGoogle Scholar
  39. 39.
    G. Klimeck, S.S. Ahmed, H. Bae, N. Kharche, S. Clark, B. Haley, S. Lee, M. Naumov, H. Ryu, and F. Saied, IEEE Trans. Electron Devices 54, 2079 (2007).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  1. 1.Department of Electrical EngineeringShahid Beheshti UniversityTehranIran

Personalised recommendations