Advertisement

Numerical Simulation and Optimization of An a-ITZO TFT Based on a Bi-Layer Gate Dielectrics

  • Taki Eddine Taouririt
  • Afak Meftah
  • Nouredine Sengouga
Article
  • 9 Downloads

Abstract

This work is an optimization study by numerical simulation of the performance of a bottom gate amorphous indium tin zinc oxide thin film transistor (a-ITZO TFT) using SILVACO-ATLAS software. The optimization process is focused on the gate dielectric conception, namely, thicknesses, number of layers and materials. The electrical characteristics calculated are the gate capacitance per unit area (\( C_{i} \)), the on-current (\( I_{\rm{on}} \)), the on–off current (\( I_{\rm{on}} /I_{\rm{off}} \)) ratio, the threshold voltage (\( V_{\rm{T}} \)), the field-effect mobility (\( \mu_{\rm{FE}} \)), the sub-threshold swing (\( {\hbox{SS}} \)) and the resistivity (\( \rho \)) of the a-ITZO channel. The obtained results indicate that using a bi-layer dielectrics (SiO2/HfO2) with a relatively high thickness (\( {\hbox{BDT}} = 70\;{\hbox{nm}} \)) improves the electrical response compared to TFT based on the mono-layer dielectric, for the same physical thickness, and the optimized outputs obtained are \( C_{i} = 3.45 \times 10^{ - 7} \;{\hbox{F/cm}}^{2} \), \( I_{\rm{on}} = 4.12 \times 10^{ - 5} \;{\hbox{A}} \), \( I_{\rm{on}} /I_{\rm{off}} = 4.67 \times 10^{8} \), \( V_{\rm{T}} = - {\kern 1pt} 0.45\;{\hbox{V}} \), \( \mu_{\rm{FE}} = 29.34\;{\hbox{cm}}^{2} \; {\hbox{V}}^{ - 1} \;{\hbox{s}}^{ - 1} \), \( {\hbox{SS}} = 6.42 \times 10^{ - 2} \;{\hbox{V/dec}} \), and \( \rho = 2.60 \times 10^{ - 2} \;\varOmega \;{\hbox{cm}} \).

Keywords

a-ITZO SiO2 HfO2 TFT high-k equivalent oxide thickness Silvaco Atlas 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Liu, Q. Zhang, G.X. Liu, F.K. Shan, J.Q. Liu, W.J. Lee, B.C. Shin, and J.S. Bae, J. Electroceram. 33, 31 (2014).CrossRefGoogle Scholar
  2. 2.
    D.-H. Kim, W.-J. Kim, S.J. Park, H.W. Choi, and K.-H. Kim, Surf. Coat. Technol. 205, S324 (2010).CrossRefGoogle Scholar
  3. 3.
    C.A. Hoel, T.O. Mason, J.-F. Gaillard, and K.R. Poeppelmeier, Chem. Mater. 22, 3569 (2010).CrossRefGoogle Scholar
  4. 4.
    A.E. Chagarov and C.A. Kummel, Fundamentals of III-V Semiconductor MOSFET's, ed. S. Oktyabrsky and P. Ye (Boston: Springer, 2010), p. 93.Google Scholar
  5. 5.
    T. Gupta, Copper Interconnect Technology (New York: Springer, 2009), p. 72.CrossRefGoogle Scholar
  6. 6.
    Y. Li, J.-W. Lee, T.-W. Tang, T.-S. Chaod, T.-F. Lei, and S.M. Sze, Comput. Phys. Commun. 147, 214 (2002).CrossRefGoogle Scholar
  7. 7.
    J. Robertson, Eur. Phys. J. Appl. Phys. 28, 265 (2004).CrossRefGoogle Scholar
  8. 8.
    Y.R. Sharma, I. J. R. A. S. E. T. 1, 2321 (2013).Google Scholar
  9. 9.
    D. Misra, H. Iwai, and H. Wong, Electrochem. Soc. Interface 14, 30 (2005).Google Scholar
  10. 10.
    A.P. Huang, Z.C. Yang, and P.K. Chu, P.K. Chu (ed.), Intech; Olajinica. ISBN:978 (2010).Google Scholar
  11. 11.
    SILVACO-TCAD, ATLAS User’s Manual: Device Simulation Software (California: SILVACO International, 2014).Google Scholar
  12. 12.
    T. Kamiya, K. Nomura, and H. Hosono, J. Disp. Technol. 5, 273 (2009).CrossRefGoogle Scholar
  13. 13.
    E.K.-H. Yu, S. Jun, D.H. Kim, and J. Kanicki, J. Appl. Phys. 116, 154505 (2014).CrossRefGoogle Scholar
  14. 14.
    J. Jang, D.G. Kim, D.M. Kim, S.-J. Choi, J.-H. Lim, J.-H. Lee, Y.-S. Kim, B.D. Ahn, and D.H. Kim, Appl. Phys. Lett. 105, 152108 (2014).CrossRefGoogle Scholar
  15. 15.
    D. Dass, R. Prasher, and R. Vaid, J. Nano-Electron. Phys. 5, 1 (2013).Google Scholar
  16. 16.
    T. Kanazawa, T. Amemiya, A. Ishikawa, V. Upadhyaya, K. Tsuruta, T. Tanaka, and Y. Miyamoto, Sci. Rep. 6, 22277 (2016).CrossRefGoogle Scholar
  17. 17.
    G.D. Wilk, R.M. Wallace, and J.M. Anthony, J. Appl. Phys. 89, 5243 (2001).CrossRefGoogle Scholar
  18. 18.
    O. Sneh, R.B. Clark-Phelps, A.R. Londergan, J. Winkler, and T.E. Seidel, Thin Solid Films 402, 248 (2002).CrossRefGoogle Scholar
  19. 19.
    I.Z. Mitrovic, O. Buiu, S. Hall, C. Bungey, T. Wagner, W. Davey, and Y. Lu, Microelectron. Reliab. 47, 645 (2007).CrossRefGoogle Scholar
  20. 20.
    C.M. Perkins, B.B. Triplett, P.C. McIntyre, K.C. Saraswat, S. Haukka, and M. Tuominen, Appl. Phys. Lett. 78, 2357 (2001).CrossRefGoogle Scholar
  21. 21.
    Y. Kim, G. Gebara, M. Freiler, J. Barnett, D. Riley, J. Chen, K. Torres, J. Lim, B. Foran, and F. Shaapur, in IEDM’01, IEEE International Electron. Devices Meeting, Technical Digest (IEEE, Washington, DC, USA). 20.2.1 (2001).Google Scholar
  22. 22.
    O. Nilsen, M. Peussa, H. Fjellvag, L. Niinisto, and A. Kjekshus, J. Mater. Chem. 9, 1781 (1999).CrossRefGoogle Scholar
  23. 23.
    Y.S. Kim, J.S. Kang, S.J. Yun, and K.I. Cho, J. Korean Phys. Soc. 35, S216 (1999).Google Scholar
  24. 24.
    R. Singh and R.K. Ulrich, Electrochem. Soc. Interface 8, 26 (1999).Google Scholar
  25. 25.
    M. Angela Rabaa, J. Bautista-Ruíza, and R. Miryam Joyab, J. Mater. Res. 19, 1381 (2016).CrossRefGoogle Scholar
  26. 26.
    J.J. Senkevich and S.B. Desu, Poly(tetra-fluoro-p-xylylene). Appl. Phys. Lett. 72, 258 (1998).CrossRefGoogle Scholar
  27. 27.
    L. Colombo, J.J. Chambers, and H. Niimi, Electrochem. Soc. Interface 16, 51 (2007).Google Scholar
  28. 28.
    A. Ortiz-Conde, F.J. Garcia Sànchez, J.J. Liou, A. Cerdeira, M. Estradac, and Y. Yue, Microelectron. Reliab. 42, 583 (2002).CrossRefGoogle Scholar
  29. 29.
    T. Kamiya, K. Nomura, and H. Hosono, Sci. Technol. Adv. Mater. 11, 1 (2010).Google Scholar
  30. 30.
    R.L. Hoffman, J. Appl. Phys. 95, 5813 (2004).CrossRefGoogle Scholar
  31. 31.
    L. Yongye, K. Jang, S. Velumani, C.P. Thi Nguyen, and J. Yi, J. Semicond. 36, 024007 (2015).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  • Taki Eddine Taouririt
    • 1
  • Afak Meftah
    • 1
  • Nouredine Sengouga
    • 1
  1. 1.Laboratory of Metallic and Semi-Conducting MaterialsUniversity of BiskraBiskraAlgeria

Personalised recommendations