Journal of Electronic Materials

, Volume 48, Issue 2, pp 982–990 | Cite as

EDTA-Complexing Sol–Gel Synthesis of LaFeO3 Nanostructures and Their Gas-Sensing Properties

  • Fan Tong
  • Ye Zhao
  • Xiao Qu
  • Rong Yang
  • Maohua WangEmail author


Perovskite type LaFeO3 have now been successfully synthesized by a sol–gel process based on an ethylene diamine tetraacetic acid (EDTA)-complexing method. The structure and morphology of the products were characterized by x-ray diffraction, scanning electron microscopy, and transmission electron microscopy. Based on the experimental results, the average crystallite size of the LaFeO3 nanostructures can be increased from 20.0 nm to 34.1 nm as the calcination temperature of the precursor increased, ranging from 500°C to 800°C. When the molar ratio of EDTA:total metal ions reaches 1.2:1, the prepared LaFeO3 seems to have a nearly spherical morphology, and the sample has a relatively uniform particle size distribution with an average size of about 40 nm. After comprehensive analysis, gas sensor research shows that LaFeO3 nanostructure-based sensors have potential applications in acetone gas monitoring. When exposed to 100 ppm acetone, the response of LaFeO3 nanostructures at 250°C was 11.7, the response time was 9 s, and the recovery time was 15 s. Thus, the facile synthesis route used in this study for synthesizing LaFeO3 nanoparticles could be expected to be extended for the preparation of binary metal oxide gas-sensing materials.


LaFeO3 nanostructure EDTA complexing sol–gel 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was financially supported by Changzhou Science, Technology Innovation Project.

Conflict of interest

The authors declare that they have no competing interests.


  1. 1.
    F. Bidrawn, G. Kim, N. Aramrueang, J.M. Vohas, and R.J. Gorte, J. Power Sources 195, 720 (2010).Google Scholar
  2. 2.
    T.H. Shin, S. Ida, and T. Ishihara, J. Am. Chem. Soc. 133, 19399 (2011).Google Scholar
  3. 3.
    L.M. Liu, K.N. Sun, X.K. Li, M. Zhang, Y.B. Liu, N.Q. Zhang, and X.L. Zhou, Int. J. Hydrogen Energy 37, 12574 (2012).Google Scholar
  4. 4.
    Z.X. Wei, Y. Wang, J.P. Liu, C.M. Xiao, W.W. Zeng, and S.B. Ye, J. Mater. Sci. 48, 1117 (2013).Google Scholar
  5. 5.
    W. Yang, R.D. Zhang, B.H. Chen, N. Bion, D. Duprez, L.W. Hou, H. Zhang, and S. Royer, Chem. Commun. 49, 4923 (2013).Google Scholar
  6. 6.
    X. Ren, H.T. Yang, S. Gen, J. Zhou, T.Z. Yang, X.Q. Zhang, Z.H. Cheng, and S.H. Sun, Nanoscale 8, 752 (2016).Google Scholar
  7. 7.
    D. Bayraktar, F. Clemens, S. Diethelm, T. Graule, and P. Holtappels, J. Eur. Ceram. Soc. 27, 2455 (2007).Google Scholar
  8. 8.
    P. Song, Q. Wang, Z. Zhang, and Z.X. Yang, Sens. Actuators B Chem. 147, 248 (2010).Google Scholar
  9. 9.
    J. Zhao, Y.P. Li, X.W. Li, G.Y. Lu, L. You, X.S. Liang, F.M. Liu, T. Zhang, and Y. Du, Sens. Actuators 181, 802 (2013).Google Scholar
  10. 10.
    Z.F. Dai, C.S. Lee, B.Y. Kim, C.H. Kwak, J.W. Yoon, H.M. Jeong, and J.H. Lee, Appl. Mater. Interfaces 6, 16217 (2014).Google Scholar
  11. 11.
    O. Haas, U.F. Vogt, C. Soltmann, A. Braun, W.S. Yoon, X.Q. Yang, and T. Graule, Mater. Res. Bull. 44, 1397 (2009).Google Scholar
  12. 12.
    T. Liu and Y.B. Xu, Mater. Chem. Phys. 129, 1047 (2011).Google Scholar
  13. 13.
    F.T. Li, Y. Liu, Z.M. Sun, R.H. Liu, C.G. Kou, Y. Zhao, and D.S. Zhao, Mater. Lett. 65, 406 (2011).Google Scholar
  14. 14.
    J.G. Deng, H.X. Dai, H.Y. Jiang, L. Zhang, G.Z. Wang, H. He, and C.T. Au, Environ. Sci. Technol. 44, 2618 (2010).Google Scholar
  15. 15.
    M. Khorasani-Motlagh, M. Noroozifar, and A. Ahanin-Jan, J. Iran. Chem. Soc. 9, 833 (2012).Google Scholar
  16. 16.
    M. Sadakane, T. Asanuma, J. Kubo, and W. Ueda, Chem. Mater. 17, 3546 (2005).Google Scholar
  17. 17.
    J. Qin, Z.D. Cui, X.J. Yang, S.L. Zhu, Z.Y. Li, and Y.Q. Liang, Sens. Actuators, B 209, 706 (2015).Google Scholar
  18. 18.
    L. Zhang, H. Qin, P. Song, J. Hu, and M. Jiang, Mater. Chem. Phys. 98, 358 (2006).Google Scholar
  19. 19.
    X. Liu, B. Cheng, H. Qin, P. Song, S. Huang, R. Zhang, J. Hu, and M. Jiang, J. Phys. Chem. Solids 68, 511 (2007).Google Scholar
  20. 20.
    X. Liu, B. Cheng, J. Hu, H. Qin, and M. Jiang, Sens. Actuators, B 129, 53 (2008).Google Scholar
  21. 21.
    Y.G. Cho, K.H. Choi, Y.R. Kim, J.S. Jung, and S.H. Lee, Bull. Korean Chem. Soc. 30, 1368 (2009).Google Scholar
  22. 22.
    L.H. Sun, H.W. Qin, K.Y. Wang, M. Zhao, and J.F. Hu, Mater. Chem. Phys. 125, 305 (2011).Google Scholar
  23. 23.
    C.H. Feng, S.P. Ruan, J.J. Li, B. Zou, J.Y. Luo, W.Y. Chen, W. Dong, and F.Q. Wu, Sens. Actuators, B 155, 232 (2011).Google Scholar
  24. 24.
    C. Doroftei, P.D. Popa, and F. Iacomi, Sens. Actuators, B 161, 977 (2012).Google Scholar
  25. 25.
    K. Fan, H. Qin, L. Wang, L. Ju, and J. Hu, Sens. Actuators, B 177, 265 (2013).Google Scholar
  26. 26.
    P.J. Yao, J. Wang, W.L. Chu, and Y.W. Hao, J. Mater. Sci. 48, 441 (2013).Google Scholar
  27. 27.
    C. Shi, H. Qin, M. Zhao, X. Wang, L. Li, and J. Hu, Sens. Actuators, B 190, 25 (2014).Google Scholar
  28. 28.
    A. Benali, S. Azizi, M. Bejar, E. Dhahri, and M.F.P. Graca, Ceram. Int. 40, 14367 (2014).Google Scholar
  29. 29.
    P. Song, H. Zhang, D. Han, J. Li, Z. Yang, and Q. Wang, Sens. Actuators, B 196, 140 (2014).Google Scholar
  30. 30.
    H. Zhang, P. Song, D. Han, and Q. Wang, Phys. E 63, 21 (2014).Google Scholar
  31. 31.
    H.X. Xiao, C. Xue, P. Song, J. Li, and Q. Wang, Appl. Surf. Sci. 337, 65 (2015).Google Scholar
  32. 32.
    J. Qin, Z.D. Cui, X.J. Yang, S.L. Zhu, Z.Y. Li, and Y.Q. Liang, Sens. Actuators, B 209, 706 (2015).Google Scholar
  33. 33.
    J. Qin, Z.D. Cui, X.J. Yang, S.L. Zhu, Z.Y. Li, and Y.Q. Liang, J. Alloys. Compd. 635, 194 (2015).Google Scholar
  34. 34.
    E.S. Cao, Y.Q. Yang, T.T. Cui, Y.J. Zhang, W.T. Hao, L. Sun, H. Peng, and X. Deng, Appl. Surf. Sci. 393, 134 (2017).Google Scholar
  35. 35.
    Z.P. Shao and S.M. Haile, Nature 431, 170 (2004).Google Scholar
  36. 36.
    Z.P. Shao, W.S. Wang, Y. Cong, H. Dong, J.H. Tong, and G.X. Xiong, J. Membr. Sci. 172, 177 (2000).Google Scholar
  37. 37.
    C. Zhang, J. Shi, X. Yang, L. De, and X. Wang, Mater. Chem. Phys. 123, 551 (2010).Google Scholar
  38. 38.
    Y.E. Zhao, C.Y. Cai, Y.Y. Luo, and Z.H. He, Novel Magn. 17, 383 (2004).Google Scholar
  39. 39.
    D. Koodynska, J. Ryczkowski, and Z. Hubicki, Eur. Phys. J. Spec. Top. 54, 339 (2008).Google Scholar
  40. 40.
    D.W.L. Griffiths, H.E. Hallam, and W.J. Thomas, J. Catal. 17, 18 (1970).Google Scholar
  41. 41.
    L. Zhang, H.W. Qin, P. Song, J.F. Hu, and M.H. Jiang, Mater. Chem. Phys. 98, 358 (2006).Google Scholar
  42. 42.
    H.X. Xiao, C. Xue, P. Song, J. Li, and Q. Wang, Appl. Surf. Sci. 337, 65 (2015).Google Scholar
  43. 43.
    Y. Tong, Y. Zhang, B. Jiang, J. He, X. Zheng, and Q. Liang, IEEE Sens. J. 17, 2404 (2017).Google Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  • Fan Tong
    • 1
  • Ye Zhao
    • 1
  • Xiao Qu
    • 1
  • Rong Yang
    • 1
  • Maohua Wang
    • 1
    Email author
  1. 1.School of Petrochemical EngineeringChangzhou UniversityChangzhouPeople’s Republic of China

Personalised recommendations