Advertisement

Journal of Electronic Materials

, Volume 48, Issue 2, pp 942–950 | Cite as

Optical Properties of Energy-Dependent Effective Mass GaAs/GaxIn1−xAs and GaAs/AlxGa1−xAs Quantum Well Systems: A Shooting Method Study

  • M. Solaimani
  • Seyed Mohammad Ali AleomraninejadEmail author
Article
  • 17 Downloads

Abstract

In this paper, we study the effect of energy-dependent effective mass on optical properties of GaAs/GaxIn1−xAs and GaAs/AlxGa1−xAs quantum well systems through the compact density matrix approach. We solved the resulting nonlinear Schrödinger equation by a simple shooting method and present the algorithm. We show that the energy-dependent effective mass effect is more important for systems with narrower quantum well systems. By an energy-dependent effective mass assumption, absorption coefficient peak height increases with increasing the total system length L while in the constant effective mass limit, absorption coefficient peak heights have not been influenced by changing L. In the GaAs/AlxGa1−xAs system, by increasing the number of wells, the linear absorption coefficient amplitude at first increases and then decreases in the fixed effective mass approximation and monotonically decreases in the energy-dependent effective mass case. By increasing the number of wells, the linear absorption coefficient peak position at first shows a blue shift and then shows a redshift. In the GaAs/GaxIn1−xAs system, the situation is more complicated and it is described in more detail in the text. However, GaAs/GaxIn1−xAs quantum well systems have larger values of absorption coefficient peak heights than GaAs/AlxGa1−xAs ones.

Keywords

GaAs/GaxIn1−xAs and GaAs/AlxGa1−xAs Quantum wells energy-dependent effective mass absorption coefficient refractive index changes shooting method 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

We are grateful for Qom University of Technology support.

References

  1. 1.
    U. Yesilgul, J. Lumin. 132, 765–773 (2012).CrossRefGoogle Scholar
  2. 2.
    E.C. Niculescu and A. Radu, Eur. Phys. J. B 80, 73–82 (2011).CrossRefGoogle Scholar
  3. 3.
    I. Saidi, L. Bouzaiene, H. Maaref, and H. Mejri, J. Appl. Phys. 101, 094506 (2007).CrossRefGoogle Scholar
  4. 4.
    R.Z. Wang, K.X. Guo, B. Chen, Y.B. Zheng, and B. Li, Superlattices Microstruct. 45, 8–15 (2009).CrossRefGoogle Scholar
  5. 5.
    F.M. Gomez-Campos, S. Rodriguez-Bolívar, J.A. Lopez-Villanueva, J.A. Jiménez-Tejada, and J.E. Carceller, J. Appl. Phys. 98, 033717 (2005).CrossRefGoogle Scholar
  6. 6.
    F.M. Gomez-Campos, S. Rodriguez-Bolívar, and J.E. Carceller, J. Appl. Phys. 101, 093715 (2007).CrossRefGoogle Scholar
  7. 7.
    M. Solaimani, S.M.A. Aleomraninejad, and L. Lavaei, Superlattices Microstruct. 111, 556–567 (2017).CrossRefGoogle Scholar
  8. 8.
    D.F. Nelson, R.C. Miller, and D.A. Kleinmann, Phys. Rev. B. 35, 7770 (1987).CrossRefGoogle Scholar
  9. 9.
    I. Filikhin, V.M. Suslov, and B. Vlahovic, Phys. E. 33, 349–354 (2006).CrossRefGoogle Scholar
  10. 10.
    I. Filikhin, E. Deyneka, and B. Vlahovic, Modelling Simul. Mater. Sci. Eng. 12, 1121–1130 (2004).CrossRefGoogle Scholar
  11. 11.
    H. Yildirim and B. Aslan, Phys. Status Solidi B 254, 1700031 (2017).CrossRefGoogle Scholar
  12. 12.
    J.D. Cooper, A. Valavanis, Z. Ikonic, P. Harrison, and J.E. Cunningham, J. Appl. Phys. 108, 113109 (2010).CrossRefGoogle Scholar
  13. 13.
    G. Liang, S. Yong-chun, X. Jing-jun, and W. Zhan-guo, Superlattices Microstruct. 61, 81–90 (2013).CrossRefGoogle Scholar
  14. 14.
    V. Mehrmann and H. Voss, GAMM Mitteilungen. 27, 121 (2004).CrossRefGoogle Scholar
  15. 15.
    C. Yang, W. Gao, and J. Meza, SIAM J. Matrix Anal. Appl. 30, 1773–1788 (2009).CrossRefGoogle Scholar
  16. 16.
    J. Koutecky and V. Bonacic, J. Chem. Phys. 55, 2408–2413 (1971).CrossRefGoogle Scholar
  17. 17.
    M. Solaimani, M. Izadifard, H. Arabshahi, and M.R. Sarkardehi, J. Lumin. 134, 699–705 (2013).CrossRefGoogle Scholar
  18. 18.
    M. Solaimani, M. Ghalandari, and L. Lavaei, J. Opt. Soc. Am. B. 33, 420–425 (2016).CrossRefGoogle Scholar
  19. 19.
    M. Solaimani, Chin. Phys. Lett. 32, 117304 (2015).CrossRefGoogle Scholar
  20. 20.
    M. Solaimani, G.H. Sun, and S.H. Dong, Chin. Phys. B 27, 040301 (2018).CrossRefGoogle Scholar
  21. 21.
    M. Ghalandari and M. Solaimani, Opt. Quant. Electron. 48, 514 (2016).CrossRefGoogle Scholar
  22. 22.
    S. Chaudhurl and K.K. Bajaj, Phys. Rev. B. 29, 1803–1806 (1984).CrossRefGoogle Scholar
  23. 23.
    E. Kane, J. Phys. Chem. Solids 1, 249–261 (1957).CrossRefGoogle Scholar
  24. 24.
    P. Klenovsky, D. Hemzal, P. Steindl, M. Zikova, V. Krapek, and J. Humlicek, Phys. Rev. B. 92, 241302 (2015).CrossRefGoogle Scholar
  25. 25.
    M. Yahyaoui, K. Sellami, K. Boujdaria, M. Chamarro, and C. Testelin, Semicond. Sci. Technol. 28, 125018 (2013).CrossRefGoogle Scholar
  26. 26.
    K. MayLau and W. Xu, IEEE J. Quant. Electron. 28, 1773–1777 (1992).CrossRefGoogle Scholar
  27. 27.
    S. Adachi, J. Appl. Phys. 58, R1–R29 (1985).CrossRefGoogle Scholar
  28. 28.
    F. Ungan, R.L. Restrepo, M.E. Mora-Ramos, A.L. Morales, and C.A. Duque, Phys. B 434, 26–31 (2014).CrossRefGoogle Scholar
  29. 29.
    S. Gasiorowicz, Quantum Physics, 3rd ed. (New York: Wiley, 2003), pp. 47–50.Google Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  1. 1.Department of Physics, Faculty of ScienceQom University of TechnologyQomIran
  2. 2.Department of Mathematics, Faculty of ScienceQom University of TechnologyQomIran

Personalised recommendations