Journal of Electronic Materials

, Volume 48, Issue 2, pp 717–744 | Cite as

Review of the Selected Carbon-Based Materials for Symmetric Supercapacitor Application

  • Mateusz CiszewskiEmail author
  • Andrzej Koszorek
  • Tomasz Radko
  • Piotr Szatkowski
  • Dawid Janas
Open Access


Carbon materials are among the most commonly used components of supercapacitor electrodes. Particularly, active carbons are recognized as cheap, available, and easily tailored materials. However, the carbon family, i.e. carbon products and carbon precursors, consists of many members. In this manuscript some of these materials, including laboratory scale-produced carbon gels, carbon nanotubes and carbonized materials, as well as industrial scale-produced graphites, pitches, coke and coal, were compared. Discussion was preceded by a short history of supercapacitors and review of each type of tested material, from early beginning to state-of-the-art. Morphology and structure of the materials were analyzed (specific surface area, pore volume and interlayer spacing determination), to evaluate their applicability in energy storage. Thermal analysis was used to determine the stability and purity. Finally, electrochemical evaluation using cyclic voltammetry, galvanostatic charge–discharge and electrochemical impedance spectroscopy was performed. Outcomes of each analytical technique were summarized in different sections.


Carbon carbon gel coal tar pitch carbonized materials energy storage supercapacitors 



The authors would particularly like to thank Dr. Krzysztof Koziol from Department of Materials Science and Metallurgy, Cambridge University, UK for giving opportunity to synthesize CNTs. Recognition is also due to MSc Elżbieta Szatkowska for her laboratory help in carbon aerogels synthesis. Authors would like to thank Institute of Non-Ferrous Metals for the ability to prepare this paper with particular thanks due to Andrzej Chmielarz and Katarzyna Leszczyńska-Sejda. Authors deeply appreciate contribution of MSc Katarzyna Bilewska in evaluation of x-ray powder diffraction results. Authors would also like to thank National Science Center, Poland (under the Polonez program, Grant Agreement UMO-2015/19/P/ST5/03799) and the European Union’s Horizon 2020 research and innovation programme (Marie Skłodowska-Curie Grant Agreement 665778). Authors would also like to acknowledge Foundation for Polish Science for START scholarship (START 025.2017), the Ministry for Science and Higher Education for the scholarship for outstanding young scientists (0388/E-367/STYP/12/2017) and the Rector of the Silesian University of Technology in Gliwice for the Pro-Quality Grant (04/020/RGJ18/0057).


  1. 1.
    S.E. Chang, T.L. McDaniels, J. Mikawoz, and K. Peterson, Nat. Hazards 41, 337 (2007).Google Scholar
  2. 2.
    P. Hines, J. Apt, and S. Talukdar, Energy Policy 37, 5249 (2009).Google Scholar
  3. 3.
    P. Kurzweil, A. Hildebrand, and M. Weiß, ChemElectroChem 2, 150 (2015).Google Scholar
  4. 4.
    S. Ducharme, ACS Nano 3, 2447 (2009).Google Scholar
  5. 5.
    P. Sharma and T.S. Bhatti, Energy Convers. Manag. 51, 2901 (2010).Google Scholar
  6. 6.
    H.I. Becker, Patent US2800616A, by General Electric Company (1957)Google Scholar
  7. 7.
    R.A. Rightmire, Patent US3288641A, by Standard Oil Co (1962)Google Scholar
  8. 8.
    J.W. Sprague, Patent US3615829A, by Standard Oil Co (1965)Google Scholar
  9. 9.
    M. Endo, T. Takeda, Y.J. Kim, K. Koshiba, and K. Ishii, Carbon Lett. 1, 117 (2001).Google Scholar
  10. 10.
    M. Hosokawa, K. Sanada, and T. Kawamura, Patent US4313084A, by NEC Corp (1978)Google Scholar
  11. 11.
    V. Augustyn, P. Simon, and B. Dunn, Energ. Environ. Sci. 7, 1597 (2014).Google Scholar
  12. 12.
    N. Choudhary, C. Li, J. Moore, N. Nagaiah, L. Zhai, Y. Jung, and J. Thomas, Adv. Mater. 29, 1605336 (2017).Google Scholar
  13. 13.
    H.L.F. von Helmholtz, Ann. Phys. Berl. 243, 337 (1879).Google Scholar
  14. 14.
    F. Beguin, V. Presser, A. Balducci, and E. Frackowiak, Adv. Mater. 26, 2219 (2014).Google Scholar
  15. 15.
    M. Gouy, J. Phys. Théor. Appl. 9, 457 (1910).Google Scholar
  16. 16.
    D.L. Chapman, Philos. Mag. 25, 457 (1913).Google Scholar
  17. 17.
    O. Stern, Z. Elektrochem. Angew. Phys. Chem. 30, 508 (1924).Google Scholar
  18. 18.
    A. Gonzalez, E. Goikolea, J.A. Barrena, and R. Mysyk, Renew. Sust. Energ. Rev. 58, 1189 (2016).Google Scholar
  19. 19.
    B. Kastening and S. Spinzig, J. Electroanal. Chem. 214, 295 (1986).Google Scholar
  20. 20.
    A.C. Forse, C. Merlet, J.M. Griffin, and C.P. Grey, J. Am. Chem. Soc. 138, 5731 (2016).Google Scholar
  21. 21.
    F. Wang, X. Wu, X. Yuan, Z. Liu, Y. Zhang, L. Fu, Y. Zhu, Q. Zhou, Y. Wu, and W. Huang, Chem. Soc. Rev. 46, 6816 (2017).Google Scholar
  22. 22.
    V. Musolino, A. Pievatolo, and E. Tironi, Energy 36, 6697 (2011).Google Scholar
  23. 23.
    M. Winter and R.J. Brodd, Chem. Rev. 104, 4245 (2004).Google Scholar
  24. 24.
    Y. Hori, IEEJ Trans. Electr. Electr. 4, 231 (2009).Google Scholar
  25. 25.
    B.K. Deka, A. Hazarika, J. Kim, Y.B. Park, and H.W. Park, Int. J. Energy Res. 41, 1397 (2017).Google Scholar
  26. 26.
    E. Karden, S. Ploumen, B. Fricke, T. Miller, and K. Snyder, J. Power Sources 168, 2 (2007).Google Scholar
  27. 27.
    V.A. Shah, J.A. Joshi, R. Maheshwari, and R. Roy, in Proceedings of the 15th National Power System Conference, IIT Bombay (2008), p. 142Google Scholar
  28. 28.
    V. Ruiz, C. Blanco, E. Raymundo-Pinero, V. Khomenko, F. Beguin, and R. Santamaria, Electrochim. Acta 52, 4969 (2007).Google Scholar
  29. 29.
    W. Lu, L. Qu, K. Henry, and L. Dai, J. Power Sources 189, 1270 (2009).Google Scholar
  30. 30.
    R. Lin, P.L. Taberna, S. Fantini, V. Presser, C.R. Perez, F. Malbosc, N.L. Rupesinghe, K.B.K. Teo, Y. Gogotsi, and P. Simon, J. Phys. Chem. Lett. 2, 2396 (2011).Google Scholar
  31. 31.
    R.G. Roggers and K.R. Seddon, Science 302, 792 (2003).Google Scholar
  32. 32.
    C. Portet, M.A. Lillo-Rodenas, A. Linares-Solano, and Y. Gogotsi, Phys. Chem. Chem. Phys. 11, 4943 (2009).Google Scholar
  33. 33.
    L. Eliad, E. Pollak, N. Levy, G. Salitra, A. Soffer, and D. Aurbach, Appl. Phys. A 82, 607 (2006).Google Scholar
  34. 34.
    Y.J. Kim, Y. Horie, S. Ozaki, Y. Matsuzawa, H. Suezaki, C. Kim, N. Miyashita, and M. Endo, Carbon 42, 1491 (2004).Google Scholar
  35. 35.
    V.M. Gun’ko, V.V. Turov, O.P. Kozynchenko, V.G. Nikolaev, S.R. Tennison, S.T. Meikle, E.A. Snezhkova, A.S. Sidorenko, F. Ehrburger-Dolle, I. Morfin, D.O. Klymchuk, and S.V. Mikhalovsky, Adsorption 17, 453 (2011).Google Scholar
  36. 36.
    T. Zhang, J. Lang, L. Liu, L. Liu, H. Li, Y. Gu, X. Yan, and X. Ding, Chin. Chem. Lett. 28, 2212 (2017).Google Scholar
  37. 37.
    L. Jiang, J. Wang, X. Mao, X. Xu, B. Zhang, J. Yang, Y. Wang, J. Zhu, and S. Hou, Carbon 111, 207 (2017).Google Scholar
  38. 38.
    S. Rodrigues, M. Marques, I. Suarez-RuizI, D. Camean, and B.Kwiecinska Flores, Int. J. Coal Geol. 111, 67 (2013).Google Scholar
  39. 39.
    B. Kwiecinska and H.I. Petersen, Int. J. Coal Geol. 57, 99 (2004).Google Scholar
  40. 40.
    P. Beghein, G. Berlioux, B. du Mesnildot, F. Hiltmann, and M. Melin, Nucl. Eng. Des. 251, 146 (2012).Google Scholar
  41. 41.
    M. Wissler, J. Power Sources 156, 142 (2006).Google Scholar
  42. 42.
    W.M. Goldberger, P.R. Carney, R.F. Markel, and F.J. Deutschle, Granular Grahitic Carbon. Petroleum Derived Carbons (Washington: American Chemical Society, 1986), pp. 200–214.Google Scholar
  43. 43.
    F.J. Luque, J.M. Huizenga, E. Crespo-Feo, H. Wada, L. Ortega, and J.F. Barrenechea, Miner. Depos. 49, 261 (2014).Google Scholar
  44. 44.
    N. Murdie and I.A.S. Edwards, J. Mater. Sci. 20, 171 (1985).Google Scholar
  45. 45.
    O. Khvostikova, H. Hermann, H. Wendrock, T. Gemming, J. Thomas, and H. Ehrenberg, J. Mater. Sci. 46, 2422 (2011).Google Scholar
  46. 46.
    P.L. Zaleski, D.J. Derwin, and R.J. Girkant, Patent US6287694B1, by Superior Graphite Co (1998)Google Scholar
  47. 47.
    J.W. Patrick and S. Hanson, Pore Structure of Graphite, Coke and Composites, in Handbook of Porous Solids, ed. F. Schuth, K.S.W. Sing, and J. Weitkamp (Weinheim: Wiley-VCH, 2002), pp. 1900–1922.Google Scholar
  48. 48.
    L. Edwards, JOM 67, 308 (2015).Google Scholar
  49. 49.
    E.I. Andreikov, O.V. Krasnikova, and I.S. Amosova, Coke Chem. 53, 311 (2010).Google Scholar
  50. 50.
    S. Patel, Rev. Environ. Sci. Biotechnol. 11, 365 (2012).Google Scholar
  51. 51.
    M.N. Alaya, B.S. Girgis, and W.E. Mourad, J. Porous Mat. 7, 509 (2000).Google Scholar
  52. 52.
    N. Arena, J. Lee, and R. Clift, J. Clean. Prod. 125, 68 (2016).Google Scholar
  53. 53.
    J. Mort, R. Ziolo, M. Machonkin, D.R. Huffman, and M.I. Fergusson, Chem. Phys. Lett. 186, 284 (1991).Google Scholar
  54. 54.
    C. Wen, J. Li, K. Kitazawa, T. Aida, I. Honma, H. Komiyama, and K. Yamada, Appl. Phys. Lett. 61, 2162 (1992).Google Scholar
  55. 55.
    W. Yang, K.R. Ratinac, S.P. Ringer, P. Thordarson, J.J. Gooding, and F. Braet, Angew. Chem. Ger. Edit. 49, 2114 (2010).Google Scholar
  56. 56.
    W. Ren and H.M. Cheng, Nat. Nanotechnol. 9, 726 (2014).Google Scholar
  57. 57.
    M. Wilk, A. Magdziarz, I. Kalemba, and P. Gara, Renew. Energy 85, 507 (2016).Google Scholar
  58. 58.
    A.C. Pierre, History of aerogels, in Advances in Sol–Gel Derived Materials and Technologies, Aerogels Handbook, ed. M.A. Aegerter, N. Leventis, and M.M. Koebel (New York: Springer, 2011), pp. 3–18.Google Scholar
  59. 59.
    M. Mastragostino, C. Arbizzani, and F. Soavi, J. Power Sources 97–98, 812 (2001).Google Scholar
  60. 60.
    M. Yassine and D. Fabris, Energies 10, 1340 (2017).Google Scholar
  61. 61.
    X.F. Wang, Z. Chang, M. Li, and Y. Wu, Nanocarbon-based materials for asymmetric supercapacitors, in Nanocarbons for Advanced Energy Storage, ed. X. Feng (New York: Wiley, 2015), pp. 379–415.Google Scholar
  62. 62.
    H. Jankowska, A. Świątkowski, and J. Choma, Active Carbon (Chichester: Ellis Horwood Ltd., 1991), p. 280.Google Scholar
  63. 63.
    R.Ch. Bansal and M. Goyal, Activated Carbon Adsorption (New York: CRC Press, 2005), pp. 1–520.Google Scholar
  64. 64.
    H. Marsh and F.R. Reinoso, Activated Carbon, 1st ed. (Oxford: Elsevier Science, 2006), pp. 1–554.Google Scholar
  65. 65.
    H. Teng, T.S. Yih, and L.Y. Hsu, Carbon 36, 1387 (1998).Google Scholar
  66. 66.
    Y.V. Pokonova, Carbon 34, 411 (1996).Google Scholar
  67. 67.
    Y. Uraki, Y. Tamai, M. Ogawa, S. Gaman, and S. Tokura, BioResources 4, 205 (2009).Google Scholar
  68. 68.
    M.S. Solum, R.J. Pugmire, M. Jagtoyen, and F. Derbyshire, Carbon 33, 1247 (1995).Google Scholar
  69. 69.
    E. Schroöder, K. Thomauske, C. Weber, A. Hornung, and V. Tumiatti, J. Anal. Appl. Pyrol. 79, 106 (2007).Google Scholar
  70. 70.
    N.M. Nor, L.L. Chung, L.K. Teong, and A.R. Mohamed, J. Environ. Chem. Eng. 1, 658 (2013).Google Scholar
  71. 71.
    V. Dodevski, B. Janković, M. Stojmenović, S. Krstić, J. Popović, M.C. Pagnacco, M. Popović, and S. Pašalić, Colloids Surf. A 522, 83 (2017).Google Scholar
  72. 72.
    W. Tang, Y. Zhang, Y. Zhong, T. Shen, X. Wang, X. Xia, and J. Tu, Mater. Res. Bull. 88, 234 (2017).Google Scholar
  73. 73.
    C. Rodriguez Correa, T. Otto, and A. Kruse, Biomass Bioenergy 97, 53 (2017).Google Scholar
  74. 74.
    P. González-García, Renew. Sustain. Energy Rev. 82, 1393 (2018).Google Scholar
  75. 75.
    A.J. Romero-Anaya, M. Ouzzine, M.A. Lillo-Ródenas, and A. Linares-Solano, Carbon 68, 296 (2014).Google Scholar
  76. 76.
    P. Costa Vilella, J. Alves Lira, D.C.S. Azevedo, M. Bastos-Neto, and R. Stefanuttia, Ind. Crop. Prod. 109, 134 (2017).Google Scholar
  77. 77.
    X. Zhu, Y. Gao, Q. Yue, Y. Kan, W. Kong, and B. Gao, Ecotoxcol. Environ. Saf. 145, 289 (2017).Google Scholar
  78. 78.
    J. Wang, T.L. Liu, Q.X. Huang, Z.Y. Ma, Y. Chi, and J.H. Yan, Fuel Process. Technol. 162, 13 (2017).Google Scholar
  79. 79.
    A. Jain, R. Balasubramanian, and M.P. Srinivasan, Chem. Eng. J. 283, 789 (2016).Google Scholar
  80. 80.
    H. Laksaci, A. Khelifi, M. Trari, and A. Addoun, J. Clean. Prod. 147, 254 (2017).Google Scholar
  81. 81.
    A.B. Fadhil, A.I. Ahmed, and H.A. Salih, Fuel 187, 435 (2017).Google Scholar
  82. 82.
    S. Uçar, M. Erdem, T. Tay, and S. Karagöz, Appl. Surf. Sci. 255, 8890 (2009).Google Scholar
  83. 83.
    H. Sayğılı and F. Güzel, J. Clean. Prod. 113, 995 (2016).Google Scholar
  84. 84.
    J.H. Tay, X.G. Chen, S. Jeyaseelan, and N. Graham, Chemosphere 44, 45 (2001).Google Scholar
  85. 85.
    X. Chen, S. Jeyaseelan, and N. Graham, Waste Manag. 22, 755 (2002).Google Scholar
  86. 86.
    G. Xu, X. Yang, and L. Spinosa, J. Environ. Manag. 151, 221 (2015).Google Scholar
  87. 87.
    A. Gupta and A. Garg, Clean Technol. Environ. 17, 1619 (2015).Google Scholar
  88. 88.
    C. Wu, M. Song, B. Jin, Y. Wu, and Y. Huang, J. Environ. Sci. 25, 405 (2013).Google Scholar
  89. 89.
    E.L.K. Mui, W.H. Cheung, M. Valix, and G. McKay, Microporous Mesoporous Mater. 130, 287 (2010).Google Scholar
  90. 90.
    P. Hadi, K.Y. Yeung, J. Guo, H. Wang, and G. McKay, J. Environ. Manag. 170, 1 (2016).Google Scholar
  91. 91.
    A.S. Al-Rahbi and P.T. Williams, Waste Manag. 49, 188 (2016).Google Scholar
  92. 92.
    W.K. Lafi, Biomass Bioenergy 20, 57 (2001).Google Scholar
  93. 93.
    G. San Miguel, G.D. Fowler, and C.J. Sollars, Carbon 41, 1009 (2003).Google Scholar
  94. 94.
    N.A. Rashidi and S. Yusup, Chem. Eng. J. 314, 277 (2017).Google Scholar
  95. 95.
    X.F. Tan, S.B. Liu, Y.G. Liu, Y.L. Gu, G.M. Zeng, X.J. Hu, X. Wang, S.H. Liu, and L.H. Jiang, Bioresour. Technol. 227, 359 (2017).Google Scholar
  96. 96.
    F. Rodriguez-Reinoso, M. Molina-Sabio, and M.T. Gonzalez, Carbon 33, 15 (1995).Google Scholar
  97. 97.
    M. Molina-Sabio, F. Rodriguez-Reinoso, F. Caturla, and M.J. Sellés, Carbon 34, 457 (1996).Google Scholar
  98. 98.
    D.H. Everett, Pure Appl. Chem. 31, 577 (1972).Google Scholar
  99. 99.
    Q. Wang, X. Zhu, Y. Liu, Y. Fang, X. Zhou, and J. Bao, Carbon 127, 658 (2018).Google Scholar
  100. 100.
    M.A. Adekunle and N.A. Farid, Renew. Sustain. Energy Rev. 52, 1282 (2015).Google Scholar
  101. 101.
    A. Volperts, G. Dobele, A. Zhurinsh, D. Vervikishko, E. Shkolnikov, and J. Ozolinsh, New Carbon Mater. 32, 319 (2017).Google Scholar
  102. 102.
    N. Guo, M. Li, X. Sun, F. Wang, and R. Yang, Mater. Chem. Phys. 201, 399 (2017).Google Scholar
  103. 103.
    W. Li, Y. Ding, W. Zhang, Y. Shu, L. Zhang, F. Yang, and Y. Shen, J. Taiwan Inst. Chem. Eng. 64, 166 (2016).Google Scholar
  104. 104.
    L.D. Landau, Phys. Z. Sowjetunion 11, 26 (1937).Google Scholar
  105. 105.
    R. Peierls, Ann. Inst. Henri Poincaré 5, 177 (1935).Google Scholar
  106. 106.
    P.R. Wallace, Phys. Rev. 71, 622 (1947).Google Scholar
  107. 107.
    H.P. Boehm, A. Clauss, G.O. Fischer, and U. Hofamnn, Z. Naturforsch. B 17b, 150 (1962).Google Scholar
  108. 108.
    K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, and A.A. Firsov, Science 306, 666 (2004).Google Scholar
  109. 109.
    U. Khan, A. O’Neill, M. Lotya, S. De, and J.N. Coleman, Small 6, 864 (2010).Google Scholar
  110. 110.
    B.C. Brodie, On the atomic weight of graphite. Philos. Trans. R. Soc. 149, 249 (1859).Google Scholar
  111. 111.
    L. Staudenmaier, Ber. Dtsch. Chem. Ges. 31, 1481 (1898).Google Scholar
  112. 112.
    W.S. Hummers Jr and R.E. Offeman, J. Am. Chem. Soc. 80, 1339 (1958).Google Scholar
  113. 113.
    H. He, T. Riedl, A. Lerf, and J. Klinowski, J. Phys. Chem. 100, 19954 (1996).Google Scholar
  114. 114.
    S. Stankovich, D.A. Dikin, R.D. Piner, K.A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S.B.T. Nguyen, and R.S. Ruoff, Carbon 45, 1558 (2007).Google Scholar
  115. 115.
    Y. Si and E.T. Samulski, Nano Lett. 8, 1679 (2008).Google Scholar
  116. 116.
    X. Mei and J. Ouyang, Carbon 49, 5389 (2011).Google Scholar
  117. 117.
    M.J. Fernández-Merino, L. Guardia, J.I. Paredes, S. Villar-Rodil, P. Solís-Fernández, A. Martínez-Alonso, and J.M.D. Tascón, J. Phys. Chem. C 114, 6426 (2010).Google Scholar
  118. 118.
    S. Pei and H.-M. Cheng, Carbon 50, 3210 (2012).Google Scholar
  119. 119.
    L.J. Cote, R. Cruz-Silva, and J. Huang, J. Am. Chem. Soc. 131, 11027 (2009).Google Scholar
  120. 120.
    P.V. Kamat, Chem. Rev. 93, 267 (1993).Google Scholar
  121. 121.
    C. Berger, Z. Song, T. Li, X. Li, A.Y. Ogbazghi, R. Feng, Z. Dai, A.N. Marchenkov, E.H. Conrad, P.N. First, and W.A. de Heer, J. Phys. Chem. B 108, 19912 (2004).Google Scholar
  122. 122.
    W. Strupiński, K. Grodecki, A. Wysmolek, R. Stępniewski, T. Szkopek, P.E. Gaskell, A. Gruneis, D. Haberer, R. Bożek, J. Krupka, and J.M. Baranowski, Nano Lett. 11, 1786 (2011).Google Scholar
  123. 123.
    K.S. Kim, Y. Zhao, H. Jang, S.Y. Lee, J.M. Kim, K.S. Kim, J.-H. Ahn, P. Kim, J.-Y. Choi, and B.H. Hong, Nature 457, 706 (2009).Google Scholar
  124. 124.
    M. Pumera, Chem. Rec. 9, 211 (2009).Google Scholar
  125. 125.
    G. Liang, N. Neophytou, M.S. Lundstrom, and D.E. Nikonov, J. Appl. Phys. 102, 054307-1 (2007).Google Scholar
  126. 126.
    X. Wang, L. Zhi, and K. Müllen, Nano Lett. 8, 323 (2008).Google Scholar
  127. 127.
    D.S. Su, N. Maksimova, J.J. Delgado, N. Keller, G. Mestl, M.J. Ledoux, and R. Schlögl, Catal. Today 102–103, 110 (2005).Google Scholar
  128. 128.
    L.V. Radushkevich and V.M. Lukyanovich, Z. Fiz. Khim. 26, 88 (1952).Google Scholar
  129. 129.
    S. Iijima, Nature 354, 56 (1991).Google Scholar
  130. 130.
    S. Hong and S. Myung, Nat. Nanotechnol. 2, 207 (2007).Google Scholar
  131. 131.
    G.J. Brady, A.J. Way, N.S. Safron, H.T. Evensen, P. Gopalan, and M.S. Arnold, Sci. Adv. 2, 1 (2016).Google Scholar
  132. 132.
    E. Pop, D. Mann, Q. Wang, K. Goodson, and H. Dai, Nano Lett. 6, 96 (2006).Google Scholar
  133. 133.
    D. Janas, A. Cabrero-Vilatela, J. Bulmer, L. Kurzepa, and K.K. Koziol, Carbon 64, 305 (2013).Google Scholar
  134. 134.
    D. Janas, K.Z. Milowska, P.D. Bristowe, and K.K.K. Koziol, Nanoscale 9, 3212 (2017).Google Scholar
  135. 135.
    A. Lekawa-Raus, L. Kurzepa, X. Peng, and K. Koziol, Carbon 68, 597 (2014).Google Scholar
  136. 136.
    D. Janas, A.C. Vilatela, and K.K.K. Koziol, Carbon 62, 438 (2013).Google Scholar
  137. 137.
    K.K. Koziol, D. Janas, E. Brown, and L. Hao, Physica E 88, 104 (2017).Google Scholar
  138. 138.
    A. Lekawa-Raus, T. Gizewski, J. Patmore, L. Kurzepa, and K.K. Koziol, Scr. Mater. 131, 112 (2017).Google Scholar
  139. 139.
    M.-F. Yu, O. Lourie, M.J. Dyer, K. Moloni, T.F. Kelly, and R.S. Ruoff, Science 287, 637 (2000).Google Scholar
  140. 140.
    J.N. Coleman, U. Khan, W.J. Blau, and Y.K. Gun’ko, Carbon 44, 1624 (2006).Google Scholar
  141. 141.
    E.T. Thostenson, Z. Ren, and T.-W. Chou, Compos. Sci. Technol. 61, 1899 (2001).Google Scholar
  142. 142.
    A. Katunin, K. Krukiewicz, R. Turczyn, P. Sul, A. Łasica, and M. Bilewicz, Compos. Struct. 159, 773 (2017).Google Scholar
  143. 143.
    D. Janas, N. Czechowski, B. Krajnik, S. Mackowski, and K.K. Koziol, Appl. Phys. Lett. 102, 181104 (2013).Google Scholar
  144. 144.
    D. Janas, N. Czechowski, S. Mackowski, and K.K. Koziol, Appl. Phys. Lett. 104, 261107 (2014).Google Scholar
  145. 145.
    M.F.L. De Volder, S.H. Tawfick, R.H. Baughman, and A.J. Hart, Science 339, 535 (2013).Google Scholar
  146. 146.
    H.W. Kroto, J.R. Heath, S.C. O’Brien, R.F. Curl, and R.E. Smalley, Nature 318, 162 (1985).Google Scholar
  147. 147.
    J.C. Barnes, E.J. Dale, A. Prokofjevs, A. Narayanan, I.C. Gibbs-Hall, M. Juríček, C.L. Stern, A.A. Sarjeant, Y.Y. Botros, S.I. Stupp, and J.F. Stoddart, J. Am. Chem. Soc. 137, 2392 (2015).Google Scholar
  148. 148.
    R.C. Haddon, A.F. Hebard, M.J. Rosseinsky, D.W. Murphy, S.J. Duclos, K.B. Lyons, B. Miller, J.M. Rosamilia, R.M. Fleming, A.R. Kortan, S.H. Glarum, A.V. Makhija, A.J. Muller, R.H. Eick, S.M. Zahurak, R. Tycko, G. Dabbagh, and F.A. Thiel, Nature 350, 320 (1991).Google Scholar
  149. 149.
    T.R. Ohno, G.H. Kroll, J.H. Weaver, L.P.F. Chibante, and R.E. Smalley, Nature 355, 401 (1992).Google Scholar
  150. 150.
    A.P. Ramirez, Physica C 514, 166 (2015).Google Scholar
  151. 151.
    C.B. Winkelmann, N. Roch, W. Wernsdorfer, V. Bouchiat, and F. Balestro, Nat. Phys. 5, 876 (2009).Google Scholar
  152. 152.
    A.F. Hebard, M.J. Rosseinsky, R.C. Haddon, D.W. Murphy, S.H. Glarum, T.T.M. Palstra, A.P. Ramirez, and A.R. Kortan, Nature 350, 600 (1991).Google Scholar
  153. 153.
    Y. Zhao, Y.-H. Kim, A.C. Dillon, M.J. Heben, and S.B. Zhang, Phys. Rev. Lett. 94, 155504 (2005).Google Scholar
  154. 154.
    Y. Ling, G.K. Koyanagi, D. Caraiman, V. Baranov, and D.K. Bohme, Int. J. Mass Spectrom. 182, 349 (1999).Google Scholar
  155. 155.
    T. Benn, P. Herckes, and P. Westerhoff, Analysis and Risk of Nanomaterials in Environmental and Food Samples, ed. M. Farre and D. Barcelo (Elsevier BV, 2012), pp. 291--301Google Scholar
  156. 156.
    S.S. Kistler, Nature 127, 74 (1931).Google Scholar
  157. 157.
    R.W. Pekala, J. Mater. Sci. 24, 3221 (1989).Google Scholar
  158. 158.
    S. Mulik and C. Sotiriou-Leventis, in Aerogels Handbook. Advances.Sol–Gel Derived Materials and Technologies, ed. M.A. Aegerter, N. Leventis, and M.M. Koebel (New York: Springer, 2011), pp. 215–234.Google Scholar
  159. 159.
    C. Lin and J.A. Ritter, Carbon 35, 1271 (1997).Google Scholar
  160. 160.
    J. Wang, M. Glora, R. Petricevic, R. Salinger, H. Pröbtle, and J. Fricke, J. Porous Mat. 8, 159 (2001).Google Scholar
  161. 161.
    N. Job, R. Pirard, J. Marien, and J. Pirard, Carbon 42, 619 (2004).Google Scholar
  162. 162.
    M.L. Rojas-Cervantes, J. Mater. Sci. 50, 1017 (2015).Google Scholar
  163. 163.
    M. Wiener, G. Reichenauer, T. Scherb, and J. Fricke, J. Non-Cryst. Solids 350, 126 (2004).Google Scholar
  164. 164.
    S.J. Kim, S.W. Hwang, and S.H. Hyun, J. Mater. Sci. 40, 725 (2005).Google Scholar
  165. 165.
    M.J. van Bommel and A.B. de Haan, J. Mater. Sci. 29, 943 (1994).Google Scholar
  166. 166.
    C. Liang, G. Sha, and S. Guo, J. Non-Cryst. Solids 271, 167 (2000).Google Scholar
  167. 167.
    H. Tamon, H. Ishizaka, T. Yamamoto, and T. Suzuki, Carbon 37, 2049 (1999).Google Scholar
  168. 168.
    A.M. ElKhatat and S.A. Al-Muhtaseb, Adv. Mater. 23, 2887 (2011).Google Scholar
  169. 169.
    D.W. Krevelen, Coal Typology-Physics-Chemistry-Constitution, 3rd ed. (Amsterdam: Elsevier, 1993).Google Scholar
  170. 170.
    J.G. Speight, Handbook of coal analysis (New York: Wiley, 2005), pp. 1–365.Google Scholar
  171. 171.
    H.H. Damberger, The Science and Technology of Coal and Coal Utilization, ed. B. Cooper (New York: Springer, 1984), p. 7.Google Scholar
  172. 172.
    M.A. Rashid, Geochemistry of Marine Humic Compounds (New York: Springer, 1985), pp. 188–211.Google Scholar
  173. 173.
    B.P. Tissot and D.H. Welte, Petroleum Formation and Occurrence, a New Approach to Oil and Gas Exploration (Berlin: Springer, 1984), pp. 3–13.Google Scholar
  174. 174.
    J. Xu, J. Wu, and Y. He, Functions of Natural Organic Matter in Changing Environment (Dordrecht: Springer, 2013), pp. 1–268.Google Scholar
  175. 175.
    C.F.K. Diessel, Coal-Bearing Depositional Systems (Berlin: Springer, 1992), pp. 41–88.Google Scholar
  176. 176.
    M. Teichmüller and R. Teichmüller, Int. J. Earth Sci. 91, 75 (2002).Google Scholar
  177. 177.
    S. Tengler, Współczesne metody chemicznej przeróbki węgla (Warszawa: PWN, 1981).Google Scholar
  178. 178.
    D.D. Edie, Pitch and Mesophase Fibers, Carbon Fibers Filaments and Composites (Dordrecht: Kluwer Academic Publishers, 1990), pp. 43–72.Google Scholar
  179. 179.
    M.F. Yardim, E. Ekinci, and K.D. Bartle, Design and Control of Structure of Advanced Carbon Materials for Enhanced Performance (Dordrecht: Kluwer Academic Publishers, 2001), pp. 125–134.Google Scholar
  180. 180.
    M. Zander, Fuel 66, 1536 (1987).Google Scholar
  181. 181.
    P. Fisher, J.W. Stadelhofer, and M. Zander, Fuel 57, 345 (1978).Google Scholar
  182. 182.
    Z. Weishauptova, J. Medek, and Z. Vaverkova, Carbon 32, 311 (1994).Google Scholar
  183. 183.
    J. Machnikowski, H. Machnikowska, T. Brzozowska, and J. Zieliński, J. Anal. Appl. Pyrol. 65, 147 (2002).Google Scholar
  184. 184.
    P.N. Kuznetsov, L.I. Kuznetsova, F.A. Buryukin, E.N. Marakushina, and V.K. Frizorger, Solid Fuel Chem. 49, 213 (2015).Google Scholar
  185. 185.
    M. Perez, M. Granda, R. Santamaria, T. Morgan, and R. Menendez, Fuel 83, 1257 (2004).Google Scholar
  186. 186.
    A. Mianowski, S. Błażewicz, and Z. Robak, Carbon 41, 2413 (2003).Google Scholar
  187. 187.
    C. Panaitescu and G. Predeanu, Int. J. Coal Geol. 71, 448 (2007).Google Scholar
  188. 188.
    J.R. Kershaw and K.J.T. Black, Energy Fuel. 7, 420 (1993).Google Scholar
  189. 189.
    G. Collin and B. Bujnowska, Carbon 32, 547 (1994).Google Scholar
  190. 190.
    S.W. Pattinson, K. Prehn, I.A. Kinloch, D. Eder, K.K.K. Koziol, K. Schulte, and A.H. Windle, RSC Adv. 2, 2909 (2012).Google Scholar
  191. 191.
    M.G. Nijkamp, J.E.M.J. Raaymakers, A.J. van Dillen, and K.P. de Jong, Appl. Phys. A 72, 619 (2001).Google Scholar
  192. 192.
    H.M.A. Asghar, S.N. Hussain, H. Sattar, N.W. Brown, and E.P.L. Roberts, Chem. Eng. Commun. 202, 508 (2015).Google Scholar
  193. 193.
    A. Magasinski, G. Furdin, J.F. Mareche, G. Medjahdi, A. Albiniak, E. Broniek, and M. Jasienko-Halat, Fuel Proc. Technol. 79, 259 (2002).Google Scholar
  194. 194.
    X. Meng, Q. Cao, L. Jin, X. Zhang, S. Gong, and P. Li, J. Mater. Sci. 52, 760 (2017).Google Scholar
  195. 195.
    T.M. O’Grady and A.N. Wennerberg, Petroleum-Derived Carbons, ed. J.D. Bacha, J.W. Newman, and J.L. White (Washington: ACS Symposium Series, 1986), pp. 302–309.Google Scholar
  196. 196.
    I.M. Afanasov, O.N. Shornikova, I.I. Vlasov, E.V. Kogan, A.N. Seleznew, and V.V. Avdeev, Inorg. Mater. 45, 135 (2009).Google Scholar
  197. 197.
    M. Toyoda, K. Moriya, J. Aizawa, H. Konno, and M. Inagaki, Desalination 128, 205 (2000).Google Scholar
  198. 198.
    E. Miniach, A. Śliwak, A. Moyseowicz, L. Fernandez-Garcia, Z. Gonzalez, M. Granda, R. Menendez, and G. Gryglewicz, Electrochim. Acta 240, 53 (2017).Google Scholar
  199. 199.
    J. Zeng, J. Amici, A.H.A. Monteverde Videla, C. Francia, and S. Bodoardo, J. Solid State Electr. 21, 503 (2017).Google Scholar
  200. 200.
    S.S. Poulsen, P. Jackson, K. Kling, K.B. Knudsen, V. Skaug, Z.O. Kyjovska, B.L. Thomsen, P.A. Clausen, R. Atluri, T. Berthing, S. Bengtson, H. Wolff, K.A. Jensen, H. Wallin, and U. Vogel, Nanotoxicology 10, 1263 (2016).Google Scholar
  201. 201.
    S.Y. Lia and A.N. Kao, Appl. Catal. A Gen. 496, 79 (2015).Google Scholar
  202. 202.
    E. Papirer, E. Brendle, F. Ozil, and H. Balard, Carbon 37, 1265 (1999).Google Scholar
  203. 203.
    J. Shen and D.Y. Guan. Aerogels Handbook, in Preparation and Applications of Carbon Aerogels, ed. M. Aegerter, N. Leventis, and M. Koebel (New York: Springer, 2011), pp. 813–831.Google Scholar
  204. 204.
    A.M. Shariff, D.M. Beshir, M.A. Bustam, and S. Maitra, Trans. Indian Ceram. Soc. 69, 83 (2010).Google Scholar
  205. 205.
    B. Mathieu, S. Blacher, R. Pirard, J.P. Pirard, B. Sahouli, and F. Brouers, J. Non-Cryst. Solids 212, 250 (1997).Google Scholar
  206. 206.
    A. Cyganiuk, O. Gorska, A. Olejniczak, and J.P. Lukaszewicz, J. Anal. Appl. Pyrol. 98, 15 (2012).Google Scholar
  207. 207.
    Y.V. Tamarkina, V.A. Kucherenko, and T.G. Shendrik, Solid Fuel Chem. 49, 91 (2015).Google Scholar
  208. 208.
    Y. Sato, Y. Kikuchi, T. Nakamo, G. Okuno, K. Kobayakawa, T. Kawai, and A. Yokoyama, J. Power Sources 81–82, 182 (1999).Google Scholar
  209. 209.
    A. Romero, M.P. Lavin-Lopez, L. Sanchez-Silva, J.L. Valverde, and A. Paton-Carrero, Mater. Chem. Phys. 203, 284 (2018).Google Scholar
  210. 210.
    T. Ishii, Y. Kaburagi, A. Yoshida, Y. Hishiyama, H. Oka, N. Setoyama, J. Ozaki, and T. Kyotani, Carbon 125, 146 (2017).Google Scholar
  211. 211.
    X. Gong and S. Zhang, J. Anal. Appl. Pyrol. 127, 170 (2017).Google Scholar
  212. 212.
    B.K. Pradhan and N.K. Sandle, Carbon 37, 1323 (1999).Google Scholar
  213. 213.
    I.V. Moskalev, D.M. Kiselkov, V.N. Strenikov, V.A. Valtsifer, and K.A. Lykova, Coke Chem. 57, 98 (2014).Google Scholar
  214. 214.
    X. Yue, H. Wang, S. Wang, F. Zhang, and R. Zhang, J. Alloy. Compd. 505, 286 (2010).Google Scholar
  215. 215.
    S. Cui, R. Canet, A. Derre, M. Couzi, and P. Delhaes, Carbon 41, 797 (2003).Google Scholar
  216. 216.
    C. Gupta, P.H. Maheshwari, and S.R. Dhakate, Mater. Renew. Sustain. Energy 5, 2 (2016).Google Scholar
  217. 217.
    P. Delhaes, M. Couzi, M. Trinquecoste, J. Dentzer, H. Hamidou, and C. Vix-Guterl, Carbon 44, 3005 (2006).Google Scholar
  218. 218.
    G.L. Baker, A. Gupta, M.L. Clark, B.R. Valenzuela, L.M. Staska, S.J. Harbo, J.T. Pierce, and J.A. Dill, Toxicol. Sci. 10, 122 (2008).Google Scholar
  219. 219.
    F.J. Maldonado-Hodar, C. Moreno-Castilla, J. Rivera-Utrilla, Y. Hanzawa, and Y. Yamada, Langmuir 16, 4367 (2000).Google Scholar
  220. 220.
    Z.M. Markovic, B.M. Babic, M.D. Dramicanin, I.D. Holclajtner Antunovic, V.B. Pavlovic, D.B. Perusko, and B.M. Todorovic Markovic, Synth. Met. 162, 743 (2012).Google Scholar
  221. 221.
    S.J. Hill, W.J. Grigsby, and P.W. Hall, Biomass Bioenergy 56, 92 (2013).Google Scholar
  222. 222.
    F. Min, M. Zhang, Y. Zhang, Y. Cao, and W.P. Pan, J. Anal. Appl. Pyrol. 92, 250 (2011).Google Scholar
  223. 223.
    H. Takagi, K. Maruyama, N. Yoshizawa, Y. Yamada, and Y. Sato, Fuel 83, 2427 (2004).Google Scholar
  224. 224.
    Y. Li, Y.S. Hu, H. Li, L. Chen, and X. Huang, J. Mater. Chem. A 4, 96 (2016).Google Scholar

Copyright information

© The Author(s) 2018

Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • Mateusz Ciszewski
    • 1
    Email author
  • Andrzej Koszorek
    • 2
  • Tomasz Radko
    • 3
  • Piotr Szatkowski
    • 4
  • Dawid Janas
    • 5
  1. 1.Department of HydrometallurgyInstitute of Non-Ferrous MetalsGliwicePoland
  2. 2.Department of Inorganic Chemistry, Analytical Chemistry and ElectrochemistrySilesian University of TechnologyGliwicePoland
  3. 3.Institute for Chemical Processing of CoalZabrzePoland
  4. 4.Faculty of Materials Science and CeramicsAGH University of Science and TechnologyKrakówPoland
  5. 5.Department of Organic Chemistry, Bioorganic Chemistry and BiotechnologySilesian University of TechnologyGliwicePoland

Personalised recommendations