Journal of Electronic Materials

, Volume 48, Issue 2, pp 930–941 | Cite as

Borotellurite Glasses for Gamma-Ray Shielding: An Exploration of Photon Attenuation Coefficients and Structural and Thermal Properties

  • G. LakshminarayanaEmail author
  • M. I. Sayyed
  • S. O. Baki
  • A. Lira
  • M. G. Dong
  • Kh. A. Bashar
  • I. V. Kityk
  • M. A. Mahdi


Gamma-ray attenuation characteristics and vibrational and thermal features have been studied for singly doped erbium (Er), dysprosium (Dy), and Er/Dy-codoped sodium lithium zinc lead borotellurite glasses. For all glasses, the amorphous nature was confirmed from the x-ray diffraction profiles, and BO3, BO4, TeO4, TeO3 +1, and TeO3 structural units were identified by both Fourier transform infrared spectroscopy and Raman spectroscopy. Glass transition (Tg), onset crystallization (Tx), peak crystallization (Tc), and melting (Tm) temperatures including thermal stabilities (ΔT) were evaluated following the glass differential scanning calorimetry profiles. An enhancement in Tg (359→399°C) and ΔT variation at 131–169°C with Er2O3, Dy2O3, and Er2O3/Dy2O3 incorporation suggested that the prepared glasses possess good thermal stability. The radiation shielding properties within the 0.356–1.33-MeV photon energy range were assessed for all the glasses. The mass attenuation coefficient (μ/ρ) values have been calculated using Monte Carlo simulation code. Further, photon interaction parameters like effective atomic number (Zeff), half-value layer (HVL), and mean free path (MFP) were also computed. The host and 1.0 Er/1.0 Dy (mol.%)-codoped glasses possess the lowest and highest Zeff values and their magnitudes are varied within the range 11.40–15.99 and 12.14–17.26, respectively. For the host glass, exposure buildup factor values were calculated by the geometric progression (GP) fitting method within the 0.015–15-MeV energy range and up to a penetration depth of 40 MFP. The removal cross sections ΣR (cm−1) for fast neutrons were calculated to evaluate the attenuation of neutrons through the prepared glasses.


Borotellurite glass FTIR Raman DSC mass attenuation coefficient radiation shielding 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The authors would like to thank Universiti Putra Malaysia (UPM), Malaysia, as this reported research work is supported and funded by the UPM under the UPM/700-2/1/GPB/2017/9554200 grant.

Supplementary material

11664_2018_6810_MOESM1_ESM.pdf (3.8 mb)
Supplementary material 1 (PDF 3875 kb)


  1. 1.
    O. Gurler and U.A. Tarim, J. Radioanal. Nucl. Chem. 293, 397 (2012).CrossRefGoogle Scholar
  2. 2.
    M. Papachristoforou and I. Papayianni, Radiat. Phys. Chem. 149, 26 (2018).CrossRefGoogle Scholar
  3. 3.
    G. Lakshminarayana, M.I. Sayyed, S.O. Baki, A. Lira, M.G. Dong, K.M. Kaky, I.V. Kityk, and M.A. Mahdi, Appl. Phys. A 124, 378 (2018).CrossRefGoogle Scholar
  4. 4.
    N. Chanthima, J. Kaewkhao, P. Limkitjaroenporn, S. Tuscharoen, S. Kothan, M. Tungjai, S. Kaewjaeng, S. Sarachai, and P. Limsuwan, Radiat. Phys. Chem. 137, 72 (2017).CrossRefGoogle Scholar
  5. 5.
    L. Shamshad, G. Rooh, P. Limkitjaroenporn, N. Srisittipokakun, W. Chaiphaksa, H.J. Kim, and J. Kaewkhao, Prog. Nucl. Energy 97, 53 (2017).CrossRefGoogle Scholar
  6. 6.
    H.O. Tekin, M.I. Sayyed, T. Manici, and E.E. Altunsoy, Mater. Chem. Phys. 211, 9 (2018).CrossRefGoogle Scholar
  7. 7.
    R. El-Mallawany, M.I. Sayyed, and M.G. Dong, J. Non-Cryst. Solids 474, 16 (2017).CrossRefGoogle Scholar
  8. 8.
    S.A. Tijani, S.M. Kamal, Y. Al-Hadeethi, M. Arib, M.A. Hussein, S. Wageh, and L.A. Dim, J. Alloys Compd. 741, 293 (2018).CrossRefGoogle Scholar
  9. 9.
    S.B. Kolavekar, N.H. Ayachit, G. Jagannath, K.N. Krishnakanth, and S.V. Rao, Opt. Mater. 83, 34 (2018).CrossRefGoogle Scholar
  10. 10.
    V.M. Krishna, S.K. Mahamuda, R.A. Talewar, K. Swapna, M. Venkateswarlu, and A.S. Rao, J. Alloys Compd. 762, 814 (2018).CrossRefGoogle Scholar
  11. 11.
    G. Lakshminarayana, K.M. Kaky, S.O. Baki, A. Lira, P. Nayar, I.V. Kityk, and M.A. Mahdi, J. Alloys Compd. 690, 799 (2017).CrossRefGoogle Scholar
  12. 12.
    S. Mohan, S. Kaur, P. Kaur, and D.P. Singh, J. Alloys Compd. 763, 486 (2018).CrossRefGoogle Scholar
  13. 13.
    R. Sharma and A.S. Rao, J. Non-Cryst. Solids 495, 85 (2018).CrossRefGoogle Scholar
  14. 14.
    G. Lakshminarayana, S.O. Baki, A. Lira, I.V. Kityk, U. Caldiño, K.M. Kaky, and M.A. Mahdi, J. Lumin. 186, 283 (2017).CrossRefGoogle Scholar
  15. 15.
    F. Qi, F. Huang, T. Wang, R. Ye, R. Lei, Y. Tian, J. Zhang, L. Zhang, and S. Xu, J. Lumin. 202, 132 (2018).CrossRefGoogle Scholar
  16. 16.
    F.M. Ezz-Eldin, N.A.E.L. Alaily, F.A. Khalifa, and H.A.E.L. Batal, “Fundamental of glass science (Germany: Verlag Der Deutschen Glastechnischen Gesellschaft, 1995).Google Scholar
  17. 17.
    G. Lakshminarayana, S.O. Baki, A. Lira, U. Caldiño, A.N. Meza-Rocha, I.V. Kityk, A.F. Abas, M.T. Alresheedi, and M.A. Mahdi, J. Non-Cryst. Solids 481, 191 (2018).CrossRefGoogle Scholar
  18. 18.
    S. Kaur, A.K. Vishwakarma, N. Deopa, A. Prasad, M. Jayasimhadri, and A.S. Rao, Mater. Res. Bull. 104, 77 (2018).CrossRefGoogle Scholar
  19. 19.
    G. Lakshminarayana, S.O. Baki, A. Lira, I.V. Kityk, and M.A. Mahdi, J. Non-Cryst. Solids 459, 150 (2017).CrossRefGoogle Scholar
  20. 20.
    E. Mansour, J. Mol. Struct. 1014, 1 (2012).CrossRefGoogle Scholar
  21. 21.
    K. Selvaraju and K. Marimuthu, J. Lumin. 132, 1171 (2012).CrossRefGoogle Scholar
  22. 22.
    G. Lakshminarayana, S.O. Baki, M.I. Sayyed, M.G. Dong, A. Lira, A.S.M. Noor, I.V. Kityk, and M.A. Mahdi, J. Non-Cryst. Solids 481, 568 (2018).CrossRefGoogle Scholar
  23. 23.
    S.M. Aziz, M.R. Sahar, and S.K. Ghoshal, J. Alloys Compd. 735, 1119 (2018).CrossRefGoogle Scholar
  24. 24.
    G. Lakshminarayana, K.M. Kaky, S.O. Baki, A. Lira, A.N. Meza-Rocha, C. Falcony, U. Caldiño, I.V. Kityk, A. Méndez-Blas, A.F. Abas, M.T. Alresheedi, and M.A. Mahdi, Opt. Mater. 78, 142 (2018).CrossRefGoogle Scholar
  25. 25.
    M.I. Sayyed and G. Lakshminarayana, J. Non-Cryst. Solids 487, 53 (2018).CrossRefGoogle Scholar
  26. 26.
    J.S. Ashwajeet, T. Sankarappa, T. Sujatha, and R. Ramanna, J. Non-Cryst. Solids 486, 52 (2018).CrossRefGoogle Scholar
  27. 27.
    A. Hruby, Czech. J. Phys. B 22, 1187 (1972).CrossRefGoogle Scholar
  28. 28.
    X-5 Monte Carlo Team, MCNP™ Version 5, A General Monte Carlo N-particle Transport Code. Technical report, LA-UR-03-1987. (LANL, USA, 2003). Google Scholar
  29. 29.
    M.J. Berger, J.H. Hubbell, S.M. Seltzer, J. Chang, J.S. Coursey, R. Sukumar, D.S. Zucker, and K. Olsen, XCOM: Photon Cross Sections Database, NIST Standard Reference Database 8 (XGAM, 2010).Google Scholar
  30. 30.
    M.G. Dong, R. El-Mallawany, M.I. Sayyed, and H.O. Tekin, Radiat. Phys. Chem. 141, 172 (2017).CrossRefGoogle Scholar
  31. 31.
    P. Yasaka, N. Pattanaboonmee, H.J. Kim, P. Limkitjaroenporn, and J. Kaewkhao, Ann. Nucl. Energy 68, 4 (2014).CrossRefGoogle Scholar
  32. 32.
    K. Singh, H. Singh, V. Sharma, R. Nathuram, A. Khanna, R. Kumar, S.S. Bhatti, and H.S. Sahota, Nucl. Inst. Methods Phys. Res. B 194, 1 (2002).CrossRefGoogle Scholar
  33. 33.
    M. Kurudirek, J. Alloys Compd. 727, 1227 (2017).CrossRefGoogle Scholar
  34. 34.
    M.I. Sayyed, J. Alloys Compd. 688-B, 111 (2016).CrossRefGoogle Scholar
  35. 35.
    A.M.A. Mostafa, S.A.M. Issa, and M.I. Sayyed, J. Alloys Compd. 708, 294 (2017).CrossRefGoogle Scholar
  36. 36.
    M. Kurudirek, Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 701, 268 (2013).CrossRefGoogle Scholar
  37. 37.
  38. 38.
    S. Singh, A. Kumar, D. Singh, K.S. Thind, and G.S. Mudahar, Nucl. Instrum. Methods Phys. Res. B 266, 140 (2008).CrossRefGoogle Scholar
  39. 39.
    C. Bootjomchai, J. Laopaiboon, C. Yenchai, and R. Laopaiboon, Radiat. Phys. Chem. 81, 785 (2012).CrossRefGoogle Scholar
  40. 40.
    K. Kaur, K.J. Singh, and V. Anand, Radiat. Phys. Chem. 120, 63 (2016).CrossRefGoogle Scholar
  41. 41.
    A. Kumar, Radiat. Phys. Chem. 136, 50 (2017).CrossRefGoogle Scholar
  42. 42.
    Y. Harima, Y. Sakamoto, S. Tanaka, and M. Kawai, Nucl. Sci. Eng. 94, 24 (1986).CrossRefGoogle Scholar
  43. 43.
    Y. Harima, Radiat. Phys. Chem. 41, 631 (1993).CrossRefGoogle Scholar
  44. 44.
    M.I. Sayyed, G. Lakshminarayana, I.V. Kityk, and M.A. Mahdi, Radiat. Phys. Chem. 139, 33 (2017).CrossRefGoogle Scholar
  45. 45.
    V.P. Singh, N.M. Badiger, N. Chanthima, and J. Kaewkhao, Radiat. Phys. Chem. 98, 14 (2014).CrossRefGoogle Scholar
  46. 46.
    Y. Elmahroug, B. Tellili, and C. Souga, Ann. Nucl. Energy 63, 619 (2014).CrossRefGoogle Scholar
  47. 47.
    A.E. Profio, Radiation Shielding and Dosimetry (New York: Wiley, 1979), p. 557.Google Scholar
  48. 48.
    A.B. Chilton, J.K. Shultis, and R.E. Faw, Principles of radiation shielding (Englewood Cliffs: Prentice-Hall, 1984), p. 488.Google Scholar
  49. 49.
    I.I. Bashter, Ann. Nucl. Energy 24, 1389 (1997).CrossRefGoogle Scholar
  50. 50.
    M.I. Sayyed, G. Lakshminarayana, M.G. Dong, M.Ç. Ersundu, A.E. Ersundu, and I.V. Kityk, Radiat. Phys. Chem. 145, 26 (2018).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  1. 1.Wireless and Photonic Networks Research Centre, Faculty of EngineeringUniversiti Putra MalaysiaSerdangMalaysia
  2. 2.Department of Physics, Faculty of ScienceUniversity of TabukTabukSaudi Arabia
  3. 3.Department of Physics, Faculty of ScienceUniversiti Putra MalaysiaSerdangMalaysia
  4. 4.Departamento de Física, Facultad de CienciasUniversidad Autónoma del Estado de MéxicoTolucaMexico
  5. 5.Department of Resource and Environment, School of MetallurgyNortheastern UniversityShenyangChina
  6. 6.Institute of Optoelectronics and Measuring Systems, Faculty of Electrical EngineeringCzestochowa University of TechnologyCzestochowaPoland

Personalised recommendations