Journal of Electronic Materials

, Volume 48, Issue 3, pp 1400–1411 | Cite as

Design and Analysis of a Dual-Permanent-Magnet-Excited Machine for Low-Speed Large-Torque Applications

  • Y. Shi
  • J. Wei
  • Z. Deng
  • Z. Shao
  • L. JianEmail author
5th International Conference of Asian Union of Magnetics Societies
Part of the following topical collections:
  1. 5th International Conference of Asian Union of Magnetics Societies (IcAUMS)


This paper proposes a dual-permanent-magnet-excited machine (DPMEM). It employs three sets of permanent magnets (PMs). The first set of PMs is magnetized radially, and located among the rotor slots. The second set is also magnetized radially, while equipped under the short stator iron teeth. The third set is magnetized circumferentially, and deployed in the slots formed by the long stator iron teeth and the second set of PMs. Two adjacent PMs magnetized circumferentially have opposite directions of magnetization, resulting in the so-called flux-focusing effect. Compared with the existing DPMEMs, the torque density of the proposed machine can be improved significantly, so as to exhibit promising potential for low-speed large-torque applications. Its operation principle is revealed by studying field harmonics in the air gap. The influences on overall performance of the proposed machine arising from the magnetization patterns, slot-pole combination and parameters are also studied by using the finite element method (FEM). Comparative study on the different machines formed by the combination of the three sets of PMs is performed by using the FEM. The results indicate that the proposed type of DPMEM contains six detailed types of PM machines, and can offer high torque density with low torque ripple, a high power factor and efficiency when compared with the six PM machines. Moreover, the magnetization pattern A or E and the ratio of p1 and p2 close to 1 are the best choice when designing this machine.


Permanent magnet machine torque density low-speed large-torque vernier machine magnetic gearing effect field-modulated 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    X.L. Li, K.T. Chau, M. Cheng, B. Kim, and R.D. Lorenz, IEEE Trans. Magn. 51, 1 (2015).Google Scholar
  2. 2.
    Y.T. Gao, R.H. Qu, D.W. Li, and F.X. Chen, IEEE Trans. Magn. 53, 1689 (2012).Google Scholar
  3. 3.
    Y.D. Deng, W. Fan, K. Ling, and C.Q. Su, J. Electron. Mater. 41, 1698 (2012).CrossRefGoogle Scholar
  4. 4.
    J.M. Silveyra, P. Xu, V. Keylin, V. DeGeorge, A. Leary, and M.E. McHenry, J. Electron. Mater. 45, 219 (2016).CrossRefGoogle Scholar
  5. 5.
    O. Lyan, V. Jankunas, E. Guseinoviene, A. Pasilis, A. Senulis, A. Knolis, and E. Kurt, J. Electron. Mater. 47, 4437 (2018).CrossRefGoogle Scholar
  6. 6.
    X.L. Li, K.T. Chau, and Y.B. Wang, Energies 9, 1 (2016).Google Scholar
  7. 7.
    B. Kin, Energies 10, 1 (2017).Google Scholar
  8. 8.
    B. Kim and T.A. Lipo, IEEE Trans. Ind. Appl. 50, 3656 (2014).CrossRefGoogle Scholar
  9. 9.
    W. Zhao, J. Zheng, J. Wang, G. Liu, J. Zhao, and Z. Fang, IEEE Trans. Ind. Electron. 63, 2072 (2016).CrossRefGoogle Scholar
  10. 10.
    L. Xu, G. Liu, W. Zhao, Y. Yang, and R. Cheng, IEEE Trans. Ind. Electron. 64, 179 (2017).CrossRefGoogle Scholar
  11. 11.
    S. Jia, R. Qu, J. Li, D. Li, and W. Kong, IEEE Trans. Magn. 53, 1 (2017).CrossRefGoogle Scholar
  12. 12.
    H. Yang, H.Y. Lin, Z.Q. Zhu, S.H. Fang, and Y.K. Huang, Energies 9, 1 (2016).Google Scholar
  13. 13.
    R. Hosoya and S. Shimomura, in 8th International Conference on Power ElectronicsECCE Asia (2011), pp. 2208–2215.Google Scholar
  14. 14.
    R. Hosoya, H. Shimada, and S. Shimomura, in IEEE Energy Conversion Congress and Exposition (2011), pp. 2790–2797.Google Scholar
  15. 15.
    S. Kazuhiro, R. Hosoya, and S. Shimomura, in 15th International Conference on Electrical Machines and Systems (2012), pp. 1–6.Google Scholar
  16. 16.
    L. Jian, Y. Shi, C. Liu, G. Xu, Y. Gong, and C.C. Chan, IEEE Trans. Magn. 49, 2381 (2013).CrossRefGoogle Scholar
  17. 17.
    W. Zhao, X. Sun, J. Ji, and G. Liu, IEEE Trans. Appl. Supercond. 26, 1 (2016).Google Scholar
  18. 18.
    Q. Wang and S. Niu, IEEE Trans. Energy Convers. 32, 424 (2017).CrossRefGoogle Scholar
  19. 19.
    Q. Wang, S. Niu, and X. Luo, IEEE Trans. Ind. Electron. 64, 6908 (2017).CrossRefGoogle Scholar
  20. 20.
    Y. Shi, S. Niu, J. Wei, L. Jian, and R. Liu, IEEE Trans. Magn. 51, 1 (2015).Google Scholar
  21. 21.
    S. Niu, S.L. Ho, and W.N. Fu, IEEE Trans. Magn. 50, 805 (2014).CrossRefGoogle Scholar
  22. 22.
    L. Jian, Y. Shi, J. Wei, Y. Zheng, and Z. Deng, Energies 8, 10127 (2015).CrossRefGoogle Scholar
  23. 23.
    K. Xie, D. Li, R. Qu, and Y. Gao, IEEE Trans. Magn. 53, 1 (2017).CrossRefGoogle Scholar
  24. 24.
    C. Shi, D. Li, R. Qu, H. Zhang, Y. Gao, and Y. Huo, IEEE Trans. Magn. 53, 1 (2017).CrossRefGoogle Scholar
  25. 25.
    D.K. Jang and J.H. Chang, IEEE Trans. Magn. 50, 877 (2014).CrossRefGoogle Scholar
  26. 26.
    K. Atallah, S.D. Calverley, and D. Howe, in IEE ProceedingsElectric Power Applications (2001), pp. 135–143.Google Scholar
  27. 27.
    Y. Shi, L. Jian, J. Wei, Z. Shao, W. Li, and C.C. Chan, IEEE Trans. Ind. Electron. 63, 1425 (2016).CrossRefGoogle Scholar
  28. 28.
    G. Peng, J. Wei, Y. Shi, Z. Shao, and L. Jian, Energies 11, 1 (2018).Google Scholar
  29. 29.
    L. Jian, Y. Shi, J. Wei, and Y. Zheng, J. Appl. Phys. 11, 17A713-1 (2015).Google Scholar
  30. 30.
    X. Zhu, J. Ji, L. Xu, and M. Kang, IEEE Trans. Appl. Supercond. 28, 1 (2018).Google Scholar
  31. 31.
    W. Hua and M. Cheng, in CES/IEEE 5th International Power Electronics and Motion Control Conference (2006), pp. 1–5.Google Scholar
  32. 32.
    M. Dou and R. Fu, in 15th International Conference on Electrical Machines and Systems (2012), pp. 1–5.Google Scholar
  33. 33.
    Y. Shi and L. Jian, Energies 11, 1 (2018).Google Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  1. 1.Department of Electrical and Electronic EngineeringSouthern University of Science and TechnologyShenzhenChina
  2. 2.Shenzhen Key Laboratory of Electric Direct Drive TechnologyShenzhenChina
  3. 3.School of Mechanical and Electrical EngineeringGuangzhou UniversityGuangzhouChina

Personalised recommendations