Advertisement

Journal of Electronic Materials

, Volume 48, Issue 1, pp 152–158 | Cite as

Mechanism of the Local Cu Protrusion in Cu-Filled Through Silicon Vias Under Heat Treatment

  • Xuewei Zhao
  • Limin MaEmail author
  • Yishu Wang
  • Fu Guo
TMS2018 Microelectronic Packaging, Interconnect, and Pb-free Solder
  • 15 Downloads
Part of the following topical collections:
  1. TMS2018 Advanced Microelectronic Packaging, Emerging Interconnection Technology, and Pb-free Solder

Abstract

Reliability of through silicon via (TSV) structures is a critical issue in the industrialization of TSV technology. One of the most important problems for TSV reliability is the thermal stress induced by a large coefficient of thermal expansion mismatch between different materials in the TSV structure. This mismatch could seriously deteriorate the performance of the TSVs, and even lead to failure. Here, the influence of heating temperature on the microstructure evolution in the TSV structure was investigated. The microstructures of Cu-filled TSV samples under different annealing conditions were characterized, and the phenomenon of global Cu protrusion and local grain-like Cu protrusion were observed in Cu-filled TSVs. Mechanisms of Cu protrusion in TSVs during heat treatment were analyzed, and possible factors involving thermal stress, grain growth, and void formation are discussed. The results showed that the origin of local grain-like TSV-Cu protrusion might be related to grain growth of Cu and the elastic modulus mismatch between coarse Cu grains.

Keywords

Through silicon via reliability Cu protrusion voiding elastic modulus 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

The authors thank the support of the Beijing Nova Program (Z161100004916155), Natural Science Foundation of Beijing Municipality (2172006 and 2172009), Beijing Municipal Excellent Talents Foundation (CIT&TCD201804007), and General Project of Science and Technology of Beijing Municipal Education Commission (SQKM201610005024).

References

  1. 1.
    P. Kumar, I. Dutta, and M.S. Bakir, J. Electron. Mater. 41, 322 (2012).CrossRefGoogle Scholar
  2. 2.
    L.W. Kong, A.C. Rudack, P. Krueger, E. Zschech, S. Arkalgud, and A.C. Diebold, Microelectron. Eng. 92, 24 (2012).CrossRefGoogle Scholar
  3. 3.
    C. Si, Q. Fei, A. Tong, and C. Pei, Effect of electroplating parameter on the TSV-Cu protrusion during annealing, Electronic Components and Technology Conference (Singapore: IEEE, 2016), p. 1599.Google Scholar
  4. 4.
    K. Kondo, No pumping at 450°C with electrodeposited copper TSV, Electronic Components and Technology Conference (Singapore: IEEE, 2016), p. 1265.Google Scholar
  5. 5.
    J. An, K.J. Moon, S. Lee, D.S. Lee, K. Yun, B.L. Park, H.J. Lee, J. Sue, Y.L. Park, G. Choi, H.K. Kang, and C. Chung, Annealing process and structural considerations in controlling extrusion-type defects Cu TSV, International Interconnect Technology Conference (San Jose: IEEE, 2012), p. 1.Google Scholar
  6. 6.
    Y.T. Ding, Y.Y. Yan, Q.W. Chen, S.W. Wang, R. Su, and H. Dang, Microelectron. Reliab. 54, 1384 (2014).CrossRefGoogle Scholar
  7. 7.
    C. Okoro, L.E. Levine, R.Q. Xu, and Y. Obeng, J. Mater. Sci. 50, 6236 (2015).CrossRefGoogle Scholar
  8. 8.
    C. Okoro, R. Labie, K. Vanstreels, A. Franquet, M. Gonzalez, B. Vandevelde, E. Beyne, D. Vandepitte, and B. Verlinden, J. Mater. Sci. 46, 3868 (2011).CrossRefGoogle Scholar
  9. 9.
    I. De Wolf, K. Croes, O.V. Pedreira, R. Labie, A. Redolfi, M. Van De Peer, K. Vanstreels, C. Okoro, B. Vandevelde, and E. Beynea, Microelectron. Reliab. 51, 1856 (2011).CrossRefGoogle Scholar
  10. 10.
    C. Okoro, C. Huyghebaert, J. Van Olmen, R. Labie, K. Lambrinou, B. Vandevelde, E. Beyne, and D. Vandepitte, AIP Conf. Proc. 1300, 214 (2010).CrossRefGoogle Scholar
  11. 11.
    K.H. Lu, S.K. Ryu, Q. Zhao, X. Zhang, J. Im, R. Huang, and P.S. Ho, Thermal stress induced delamination of through silicon vias in 3-D interconnects, Electronic Components and Technology Conference (Las Vegas: IEEE, 2010), p. 40.Google Scholar
  12. 12.
    P. Saettler, M. Boettcher, and K.J. Wolter, Characterization of the annealing behavior for copper-filled TSVs, Electronic Components and Technology Conference (San Diego: IEEE, 2012), p. 619.Google Scholar
  13. 13.
    P. Bayat, D. Vogel, R.D. Rodriguez, E. Sheremet, D.R.T. Zahn, S. Rzepka, and B. Michel, Microelectron. Eng. 137, 101 (2015).CrossRefGoogle Scholar
  14. 14.
    I. Dutta, P. Kumar, and M.S. Bakir, JOM-US 63, 70 (2011).CrossRefGoogle Scholar
  15. 15.
    A. Heryanto, W.N. Putra, A. Trigg, S. Gao, W.S. Kwon, F.X. Che, X.F. Ang, J. Wei, R.I. Made, C.L. Gan, and K.L. Pey, J. Electron. Mater. 41, 2533 (2012).CrossRefGoogle Scholar
  16. 16.
    M.H. Roh, A. Sharma, J.H. Lee, and J.P. Jung, Metall. Mater. Trans. A 46a, 2051 (2015).CrossRefGoogle Scholar
  17. 17.
    D.N. Lee, Thin Solid Films 434, 183 (2003).CrossRefGoogle Scholar
  18. 18.
    J. Turley and G. Sines, J. Phys. D Appl. Phys. 4, 264 (1971).CrossRefGoogle Scholar
  19. 19.
    H.-J. Lee, H.N. Han, J.-H. Kim, S.H. Kang, Y.-G. Cho, J.-Y. Sun, D.H. Kim, and K.H. Oh, Appl. Phys. Lett. 92, 141917 (2008).CrossRefGoogle Scholar
  20. 20.
    R. Abbasi, K. Dzieciol, and A. Borbely, Mater. Sci. Technol. 31, 540 (2015).CrossRefGoogle Scholar
  21. 21.
    E.M. Bringa, S. Traiviratana, and M.A. Meyers, Acta Mater. 58, 4458 (2010).CrossRefGoogle Scholar
  22. 22.
    D.W. Gan, B. Li, and P.S. Ho, Thin Films Stresses and Mechanical Properties XI, ed. T.E. Buchheit, A.M. Minor, R. Spolenak, and K. Takashima (Warrendale, PA: Materials Research Society, 2005), p. 319.Google Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  1. 1.Department of Material Science and EngineeringBeijing University of TechnologyBeijingChina

Personalised recommendations