Advertisement

Journal of Electronic Materials

, Volume 48, Issue 2, pp 887–897 | Cite as

Thermal Annealing Effects on the Electrical and Structural Properties of Ni/Pt Schottky Contacts on the Quaternary AlInGaN Epilayer

  • Engin ArslanEmail author
  • Şemsettin Altındal
  • Sertaç Ural
  • Ömer A. Kayal
  • Mustafa Öztürk
  • Ekmel Özbay
Article
  • 42 Downloads

Abstract

Pt/Au, Ni/Au, Ni/Pt/Au Schottky contacts were placed on a quaternary Al0.84In0.13Ga0.03N epilayer. The electrical and structural properties of the as-deposited Pt/Au, Ni/Au, Ni/Pt/Au and annealed Ni/Pt/Au Schottky contacts were investigated as a function of annealing temperature using current–voltage (I–V), capacitance–voltage (CV), and high resolution x-ray diffraction measurements (HR-XRD). According to the I–V, Norde, and CV methods, the highest Schottky barrier height (SBH) was obtained for the Pt/Au (0.82 eV (I–V), 0.83 eV (Norde), and 1.09 eV (CV)) contacts when they were compared with the other as-deposited Schottky contacts. The estimated SBH of the annealed Ni/Pt/Au Schottky contacts, calculated from the I–V results, were 0.80 eV, 0.79 eV, and 0.78 eV at 300°C, 400°C, and 500°C, respectively. The SBH decreases with an increase in the annealing temperature up to 500°C compared with that of the as-deposited Ni/Pt/Au Schottky contact. The observed extra peaks in the annealed samples confirm the formation of a new interfacial phase at the interface. However, the diffraction patterns of the annealed Schottky contacts did not change as a function of the annealing temperature. The higher ideality factors values were obtained for as-deposited Pt/Au (5.69), Ni/Au (6.09), and Ni/Pt/Au (6.42) Schottky contacts and annealed Ni/Pt/Au (6.42) Schottky contacts at 300°C (6.89), 400°C (7.43), and 500°C (8.04). The higher n results can be attributed to current-transport mechanisms other than thermionic emission, such as dislocation related tunneling.

Keywords

B1. AlInGaN A1. Schottky A3. metalorganic chemical vapor deposition (MOCVD) annealing effects 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M.E. Levinshtein, S.L. Rumyantsev, and M.S. Shur, Properties of Advanced Semiconductor Materials: GaN, AIN, InN, BN, SiC, SiGe (New York: Wiley, 2001). ISBN 978-0-471-35827-5.Google Scholar
  2. 2.
    R.S. Pengelly, S.M. Wood, J.W. Milligan, S.T. Sheppard, and W.L. Pribble, IEEE Trans. Microw. Theory Tech. 60, 1764 (2012).CrossRefGoogle Scholar
  3. 3.
    S. Nakamura, Science 281, 956 (1998).CrossRefGoogle Scholar
  4. 4.
    N. Ketteniss, L.R. Khoshroo, M. Eickelkamp, M. Heuken, H. Kalisch, R.H. Jansen, and A. Vescan, Semicond. Sci. Technol. 25, 075013 (2010).CrossRefGoogle Scholar
  5. 5.
    T. Lim, R. Aidam, P. Waltereit, T. Henkel, R. Quay, R. Lozar, T. Maier, L. Kirste, and O. Ambacher, IEEE Electron. Dev. Lett. 31, 671 (2010).CrossRefGoogle Scholar
  6. 6.
    H. Hirayama, J. Appl. Phys. 97, 091101 (2005).CrossRefGoogle Scholar
  7. 7.
    R. Wang, G. Li, J. Verma, B.S. Rodriguez, T. Fang, J. Guo, Z. Hu, O. Laboutin, Y. Cao, W. Johnson, G. Snider, P. Fay, D. Jena, and H. Xing, IEEE Electron. Dev. Lett. 32, 1215 (2011).CrossRefGoogle Scholar
  8. 8.
    B. Reuters, A. Wille, B. Hollander, E. Sakalauskas, N. Ketteniss, C. Mauder, R. Goldhahn, M. Heuken, H. Kalisch, and A. Vescan, J. Electron. Mater. 41, 905 (2012).CrossRefGoogle Scholar
  9. 9.
    B. Reuters, A. Wille, N. Ketteniss, H. Hahn, B. Hollander, M. Heuken, H. Kalisch, and A. Vescan, J. Electron. Mater. 42, 826 (2013).CrossRefGoogle Scholar
  10. 10.
    S.L. Rumyantsev, N. Pala, M.S. Shur, R. Gaska, M.E. Levinshtein, M. Asif Khan, G. Simin, X. Hu, and J. Yang, J. Appl. Phys. 88, 6726 (2000).CrossRefGoogle Scholar
  11. 11.
    S. Karboyan, J.G. Tartarin, M. Rzin, L. Brunel, A. Curutchet, N. Malbert, N. Labat, D. Carisetti, B. Lambert, M. Mermoux, E. Romain-Latu, F. Thomas, C. Bouexière, and C. Moreau, Microelectron. Reliab. 53, 1491 (2013).CrossRefGoogle Scholar
  12. 12.
    D. Marcon, T. Kauerauf, F. Medjdoub, J. Das, M. Van Hove, P. Srivastava, K. Cheng, M. Leys, R. Mertens, S. Decoutere, G. Meneghesso, E. Zanoni, and G. Borghs, in IEEE International Electron Devices Meeting, 20.3.1, 2010Google Scholar
  13. 13.
    F. Lee, L.-Y. Su, C.-H. Wang, Y.-R. Wu, and J. Huang, IEEE Electron. Dev. Lett. 36, 232 (2015).CrossRefGoogle Scholar
  14. 14.
    E. Arslan, Ş. Altındal, S. Özçelik, and E. Ozbay, Semicond. Sci. Technol. 24, 075003 (2009).CrossRefGoogle Scholar
  15. 15.
    J. Ren, D. Yan, G. Yang, F. Wang, S. Xiao, and X. Gu, J. Appl. Phys. 117, 154503 (2015).CrossRefGoogle Scholar
  16. 16.
    A. Kumar, M. Latzel, S. Christiansen, V. Kumar, and R. Singh, Appl. Phys. Lett. 107, 093502 (2015).CrossRefGoogle Scholar
  17. 17.
    Y. Koyama, T. Hashizume, and H. Hasegawa, Solid-State Electron. 43, 1483 (1999).CrossRefGoogle Scholar
  18. 18.
    E. Monroy, F. Calle, R. Ranchal, T. Palacios, M. Verdu, F.J. Sanchez, M.T. Montojo, M. Eickhoff, F. Omnes, Z. Bougriouaand, and I. Moerman, Semicond. Sci. Technol. 17, L47 (2002).CrossRefGoogle Scholar
  19. 19.
    S. Arulkumaran, T. Egawa, H. Ishikawa, M. Umeno, and T. Jimbo, IEEE Trans. Electron. Dev. 48, 573 (2001).CrossRefGoogle Scholar
  20. 20.
    L. Fang, S. Bo, L. Li-Wu, M. Nan, X. Fu-Jun, M. Zhen-Lin, S. Jie, L. Xin-Yu, W. Ke, and H. Jun, Chin. Phys. B 19, 127304 (2010).CrossRefGoogle Scholar
  21. 21.
    J. Pedrós, R. Cuerdo, R. Lossy, N. Chaturvedi, J. Würf, and F. Calle, Phys. Status Solidi (C) 3, 1709 (2006).CrossRefGoogle Scholar
  22. 22.
    S. Kim, H.J. Kim, S. Choi, J.-H. Ryou, R.D. Dupuis, K.-S. Ahn, and H. Kim, Jpn. J. Appl. Phys. 52, 10MA05 (2013).CrossRefGoogle Scholar
  23. 23.
    R. Khanna, S.J. Pearton, F. Ren, and I. Kravchenko, Appl. Surf. Sci. 252, 5814 (2006).CrossRefGoogle Scholar
  24. 24.
    V.R. Reddy, M. Ravinandan, P. Koteswara Rao, and C.-J. Choi, J. Mater. Sci. Mater. Electron. 20, 1018 (2009).CrossRefGoogle Scholar
  25. 25.
    J. Wang, D.G. Zhao, Y.P. Sun, L.H. Duan, Y.T. Wang, S.M. Zhang, H. Yang, S. Zhou, and M. Wu, J. Phys. D Appl. Phys. 36, 1018 (2003).CrossRefGoogle Scholar
  26. 26.
    T.N. Order, P. Martin, J.Y. Lin, H.X. Jiang, J.R. Williams, and T. Isaacs-Smith, Appl. Phys. Lett. 88, 183505 (2006).CrossRefGoogle Scholar
  27. 27.
    N. Miura, T. Nanjo, M. Suita, T. Oishi, Y. Abe, T. Ozeki, H. Ishikawa, T. Egawa, and T. Jimbo, Solid-State Electron. 48, 689 (2004).CrossRefGoogle Scholar
  28. 28.
    K.J. Reddy, V.R. Reddy, and E.P.N. Reddy, J. Mater. Sci. Mater. Electron. 19, 333 (2008).CrossRefGoogle Scholar
  29. 29.
    A. Akkaya, L. Esmer, B.B. Kantar, H. Çetin, and E. Ayyıldız, Microelectron. Eng. 130, 62 (2014).CrossRefGoogle Scholar
  30. 30.
    G. Greco, F. Iucolano, S.D. Franco, C. Bongiorno, A. Patti, and F. Roccaforte, IEEE Trans. Electron. Dev. 63, 2735 (2016).CrossRefGoogle Scholar
  31. 31.
    Y. Liu, H. Jiang, T. Egawa, B. Zhang, and H. Ishikawa, J. Appl. Phys. 99, 123702 (2006).CrossRefGoogle Scholar
  32. 32.
    M.A. Laurent, G. Gupta, D.J. Suntrup III, S.P. DenBaars, and U.K. Mishra, J. Appl. Phys. 119, 064501 (2016).CrossRefGoogle Scholar
  33. 33.
    Y. Liu, T. Egawa, H. Jiang, B. Zhang, H. Ishikawa, and M. Hao, Appl. Phys. Lett. 85, 6030 (2004).CrossRefGoogle Scholar
  34. 34.
    A.J. Ghazai, H.A. Hassan, Z. Hassan, and A.S. Hussein, Optoelectron. Adv. Mater. Rapid Commun. 6, 324 (2012).Google Scholar
  35. 35.
    M. Gökçen and M. Yıldırım, Chin. Phys. B 21, 128502 (2012).CrossRefGoogle Scholar
  36. 36.
    K. Akkılıç, A. Türüt, G. Cankaya, and T. Kılıçoğlu, Solid-State Commun. 125, 551 (2003).CrossRefGoogle Scholar
  37. 37.
    E. Arslan, S. Bütün, Y. Şafak, H. Uslu, İ. TaŞçıoğlu, Ş. Altındal, and E. Özbay, Microelectron. Reliab. 51, 370 (2011).CrossRefGoogle Scholar
  38. 38.
    H. Card and E. Rhoderick, J. Phys. D Appl. Phys. 4, 1589 (1971).CrossRefGoogle Scholar
  39. 39.
    S.M. Sze and K.K. Ng, Physics of Semiconductor Devices, 3rd ed. (Hoboken: Wiley, 2006).CrossRefGoogle Scholar
  40. 40.
    H. Morkoç, Handbook of Nitride Semiconductors and Devices, Vol. 1 (Weinheim: Wiley, 2008). ISBN 978-3-527-40837-5.CrossRefGoogle Scholar
  41. 41.
    S. Zhang, B. Liu, J.Y. Yin, H.H. Sun, Z.H. Feng, and L.C. Zhao, J. Phys. D Appl. Phys. 44, 075405 (2011).CrossRefGoogle Scholar
  42. 42.
    N. Nanda, K. Reddy, and V. Rajagopal Reddy, Bull. Mater. Sci. 35, 53 (2012).CrossRefGoogle Scholar
  43. 43.
    E. Arslan, Ş. Altındal, S. Özçelik, and E. Özbay, J. Appl. Phys. 105, 023705 (2009).CrossRefGoogle Scholar
  44. 44.
    E.H. Nicollian and J.R. Brews, Metal Oxide Semiconductor (MOS) Physics and Technology (New York: Wiley, 1982).Google Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  • Engin Arslan
    • 1
    • 2
    Email author
  • Şemsettin Altındal
    • 3
  • Sertaç Ural
    • 2
  • Ömer A. Kayal
    • 2
  • Mustafa Öztürk
    • 2
  • Ekmel Özbay
    • 2
    • 4
  1. 1.Department of Electrical and Electronics EngineeringAntalya Bilim UniversityAntalyaTurkey
  2. 2.Nanotechnology Research Center-NANOTAMBilkent UniversityAnkaraTurkey
  3. 3.Department of Physics, Faculty of Science and ArtsGazi UniversityAnkaraTurkey
  4. 4.Department of Physics, Department of Electrical and Electronics EngineeringBilkent UniversityAnkaraTurkey

Personalised recommendations