Journal of Electronic Materials

, Volume 48, Issue 2, pp 879–886 | Cite as

Preparation of Porous Carbon Material Derived from Cellulose with Added Melamine Sulfate and Electrochemical Performance as EDLC Electrode

  • Toshiki Tsubota
  • Yuta Maguchi
  • Kotaro Ishimoto
  • Yuki Katamune
  • Sunao Kamimura
  • Teruhisa Ohno


Activated carbon derived from cellulose with added melamine sulfate, which is known as one of the chemicals having a flame-retardant effect on the cellulose, was produced in order to dope dual hetero elements, such as nitrogen and sulfur, and was used to improve the yields of the carbonization process and carbon dioxide (CO2) activation process. The addition of melamine sulfate resulted in suppression of the BET specific surface area. The Brunauer–Emmett–Teller (BET) specific surface area for the CO2-activated sample with 30 wt.%-added melamine sulfate was 578 m2 g−1. The existence of nitrogen atoms was confirmed in the CO2-activated sample with the added melamine sulfate. However, no peak assigned to the sulfur atom appeared in the x-ray photoelectron spectroscopy spectrum for the sample with the 30 wt.%-added melamine sulfate. In spite of the lower specific surface area of the samples containing the added melamine sulfate, the capacitance values of the carbon material derived from the cellulose with added melamine sulfate were higher than those of the carbon material derived only from cellulose.


Activated carbon cellulose flame retardant co-doping electric double layer capacitor 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This study was supported by JSPS KAKENHI Grant Number JP 17K06031. The authors are grateful for JSPS.

Supplementary material

11664_2018_6799_MOESM1_ESM.pdf (557 kb)
Supplementary material 1 (PDF 557 kb)


  1. 1.
    J.M. Dias, M.C.M. Alvim-Ferraz, M.F. Almeida, J. Rivera-Utrilla, and M. Sanchez-Polo, J. Environ. Manag. 85, 833 (2007).CrossRefGoogle Scholar
  2. 2.
    T. Tsubota, D. Nagata, N. Murakami, and T. Ohno, J. Appl. Polym. Sci. 131, 40950 (2014).CrossRefGoogle Scholar
  3. 3.
    T. Tsubota, K. Takenaka, N. Murakami, and T. Ohno, J. Power Sources 196, 10455 (2011).CrossRefGoogle Scholar
  4. 4.
    T. Tsubota, M. Morita, N. Murakami, and T. Ohno, J. Power Sources 267, 635 (2014).CrossRefGoogle Scholar
  5. 5.
    L. Sun, H. Zhou, Y. Li, F. Yu, C. Zhang, X. Liu, and Y. Zhou, Mater. Lett. 189, 107 (2017).CrossRefGoogle Scholar
  6. 6.
    W. Chen, J. Shi, T. Zhu, Q. Wang, J. Qiao, and J. Zhang, Electrochim. Acta 177, 327 (2015).CrossRefGoogle Scholar
  7. 7.
    A.G. Kannan, A. Samuthirapandian, and D.-W. Kim, J. Power Sources 337, 65 (2017).CrossRefGoogle Scholar
  8. 8.
    T. Wei, X. Wei, L. Yang, H. Xiao, Y. Gao, and H. Li, J. Power Sources 331, 373 (2016).CrossRefGoogle Scholar
  9. 9.
    J. Li, G. Zhang, C. Fu, L. Deng, R. Sun, and C.-P. Wong, J. Power Sources 345, 146 (2017).CrossRefGoogle Scholar
  10. 10.
    H.T. Yi, Y.Q. Zhu, X.Y. Chen, and Z.J. Zhang, J. Alloys Compd. 649, 851 (2015).CrossRefGoogle Scholar
  11. 11.
    Y. Li, G. Wang, T. Wei, Z. Fan, and P. Yan, Nano Energy 19, 165 (2016).CrossRefGoogle Scholar
  12. 12.
    T. Akhter, M.M. Islam, S.N. Faisal, E. Haque, A.I. Minett, H.K. Liu, K. Konstantinov, and S.X. Dou, ACS Appl. Mater. Interfaces 8, 2078 (2016).CrossRefGoogle Scholar
  13. 13.
    S. Xiang, X. Yang, X. Lin, C. Chang, H. Que, and M. Li, J. Solid State Electron. 21, 1457 (2017).CrossRefGoogle Scholar
  14. 14.
    C. Chen, W. Fan, Q. Zhang, X. Fu, and H. Wu, Ionics 21, 3233 (2015).CrossRefGoogle Scholar
  15. 15.
    J. Li, G. Zan, and Q. Wu, RSC Adv. 6, 57464 (2016).CrossRefGoogle Scholar
  16. 16.
    T. Tsubota, T. Yamaguchi, C. Wang, Y. Miyauchi, N. Murakami, and T. Ohno, J. Power Sources 227, 24 (2013).CrossRefGoogle Scholar
  17. 17.
    A. Granzow, Acc. Chem. Res. 11, 177 (1978).CrossRefGoogle Scholar
  18. 18.
    H. Konno, T. Ito, M. Ushiro, K. Fushimi, and K. Azumi, J. Power Sources 195, 1739 (2010).CrossRefGoogle Scholar
  19. 19.
    H. Pan, C.K. Poh, Y.P. Feng, and J. Lin, Chem. Mater. 19, 6120 (2007).CrossRefGoogle Scholar
  20. 20.
    H. Pan, J. Li, and Y.P. Feng, Nanoscale Res. Lett. 5, 654 (2010).CrossRefGoogle Scholar
  21. 21.
    M. Kodama, J. Yamashita, Y. Soneda, H. Hatori, and K. Kamegawa, Carbon 45, 1105 (2007).CrossRefGoogle Scholar
  22. 22.
    M. Kawaguchi, A. Itoh, S. Yagi, and H. Oda, J. Power Sources 172, 481 (2007).CrossRefGoogle Scholar
  23. 23.
    J. Gamby, P.L. Taberna, P. Simon, J.F. Fauvarque, and M. Chesneau, J. Power Sources 101, 109 (2001).CrossRefGoogle Scholar
  24. 24.
    D. Hulicova, J. Yamashita, Y. Soneda, H. Hatori, and M. Kodama, Chem. Mater. 17, 1241 (2005).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  • Toshiki Tsubota
    • 1
  • Yuta Maguchi
    • 1
  • Kotaro Ishimoto
    • 1
  • Yuki Katamune
    • 2
  • Sunao Kamimura
    • 1
  • Teruhisa Ohno
    • 1
  1. 1.Department of Applied Chemistry, Faculty of EngineeringKyushu Institute of TechnologyKitakyushuJapan
  2. 2.Frontier Research Academy for Young ResearchersKyushu Institute of TechnologyKitakyushuJapan

Personalised recommendations