Journal of Electronic Materials

, Volume 48, Issue 2, pp 787–793 | Cite as

Dual-Band Binary Metamaterial Absorber Based on Low-Permittivity All-Dielectric Resonance Surface

  • Qiang Wang
  • Fen Zhang
  • Yijun Xiong
  • Yan Wang
  • Xiu-Zhi Tang
  • Chao Jiang
  • Isaac Abrahams
  • Xiaozhong Huang


A binary-structured metamaterial absorber (BMA) consisting of a low-permittivity dual-layer all-dielectric resonance surface (ADRS) and reflector was simulated and experimentally validated. Analyses of relative impedance, electric/magnetic field and power loss density indicated that the proposed BMA exhibits two absorption peaks at 14.65 GHz and 16.61 GHz, resulting from the magnetic and electrical responses of ADRS, respectively. The dependences of absorption properties on the dimensions of the ADRS and material parameters of the ADRS are discussed. It is concluded that the upper layer of the ADRS acts as an impedance-matching layer directly influencing the absorption intensity, while the bottom layer offers frequency selectivity in the 13–15 GHz range. The current design uses a low-permittivity ADRS, with simplified design and easy preparation and is notably different from conventional ternary-structured metamaterial absorbers based on a metallic resonance surface. The simplicity of the proposed BMA makes it a promising low-cost ambient temperature alternative to conventional metamaterial absorbers and could open up practical applications.


Binary-structured metamaterial absorber low-permittivity all-dielectric resonance surface frequency selectivity simplified design and easy preparation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The work was supported by the National Defense Science and Technology Innovation Project Grant Nos. 1716313ZT01002601 and 1716313ZT009 052001; and the Science and Technology Plan Project of Hunan Province Grant No. 2015TP1007; and Initial Research Funding for Special Associate Professor by Central South University Grant No. 502045002.


  1. 1.
    J.B. Pendry, Phys. Rev. Lett. 85, 3966 (2000).CrossRefGoogle Scholar
  2. 2.
    N. Fang, H. Lee, C. Sun, and X. Zhang, Science 308, 534 (2005).CrossRefGoogle Scholar
  3. 3.
    J. Garcia-Garcia, J. Bonache, I. Gil, F. Martin, M.C. Velazquez-Ahumada, and J. Martel, IEEE Trans. Microw. Theory Tech. 54, 2628 (2006).CrossRefGoogle Scholar
  4. 4.
    M.L. Si and X. Lv, Prog. Electromagn. Res. 83, 133 (2008).CrossRefGoogle Scholar
  5. 5.
    A. Turkmen, E. Ekmekci, and G. Turhan-Sayan, IET Microw. Antennas Propag. 6, 1102 (2012).CrossRefGoogle Scholar
  6. 6.
    F. Costa, S. Genovesi, and A. Monorchio, IEEE Trans. Microw. Theory Tech. 61, 146 (2013).CrossRefGoogle Scholar
  7. 7.
    N.L. Landy, S. Sajuyigbe, J.J. Mock, D.R. Smith, and W.J. Padilla, Phys. Rev. Lett. 100, 207402 (2008).CrossRefGoogle Scholar
  8. 8.
    H. Xiong, M.C. Tang, and J.S. Hong, J. Appl. Phys. 117, 207402 (2015).CrossRefGoogle Scholar
  9. 9.
    X.J. Huang, H.L. Yang, S.Q. Yu, J.X. Wang, M.H. Li, and Q.W. Ye, J. Appl. Phys. 113, 213516 (2013).CrossRefGoogle Scholar
  10. 10.
    S. Bhattacharyya and K.V. Srivastava, J. Appl. Phys. 115, 064508 (2014).CrossRefGoogle Scholar
  11. 11.
    Q.W. Ye, Y. Liu, H. Lin, M.H. Li, and H.L. Yang, Appl. Phys. A 107, 155 (2012).CrossRefGoogle Scholar
  12. 12.
    J.W. Park, P.V. Tuong, J.Y. Rhee, K.W. Kim, W.H. Jang, E.H. Choi, L.Y. Chen, and Y.P. Lee, Opt. Express 21, 9691 (2013).CrossRefGoogle Scholar
  13. 13.
    H.X. Xu, G.M. Wang, M.Q. Qi, J.G. Liang, J.Q. Gong, and Z.M. Xu, Phys. Rev. B 86, 3368 (2012).Google Scholar
  14. 14.
    L. Huang and H. Chen, Prog. Electromagn. Res. 113, 103 (2011).CrossRefGoogle Scholar
  15. 15.
    L. Peng, L.X. Ran, H.S. Chen, H.F. Zhang, J.A. Kong, and T.M. Grzegorczyk, Phys. Rev. Lett. 98, 57403 (2007).Google Scholar
  16. 16.
    Q. Zhao, L. Kang, B. Du, H. Zhao, Q. Xie, X. Huang, B. Li, J. Zhou, and L. Li, Phys. Rev. Lett. 101, 027402 (2008).CrossRefGoogle Scholar
  17. 17.
    N.V. Dung, B.S. Tung, B.X. Khuyen, Y.J. Yoo, and Y.P. Lee, J. Korean Phys. Soc. 68, 1008 (2016).CrossRefGoogle Scholar
  18. 18.
    X.M. Liu, Q. Zhao, C.W. Lan, and J. Zhou, Appl. Phys. Lett. 103, 031910 (2013).CrossRefGoogle Scholar
  19. 19.
    X. Liu, K. Bi, B. Li, Q. Zhao, and J. Zhou, Opt. Express 24, 20454 (2016).CrossRefGoogle Scholar
  20. 20.
    X.M. Liu, C.W. Lan, K. Bi, B. Li, Q. Zhao, and J. Zhou, Appl. Phys. Lett. 109, 062902 (2016).CrossRefGoogle Scholar
  21. 21.
    F. Yu, J. Wang, J.F. Wang, H. Ma, H.L. Du, Z. Xu, and S.B. Qu, Appl. Phys. Lett. 107, 211906 (2015).CrossRefGoogle Scholar
  22. 22.
    J.B. Sun, L.Y. Liu, G.Y. Dong, and J. Zhou, Opt. Express 19, 21155 (2011).CrossRefGoogle Scholar
  23. 23.
    T.L. Wanghuang, W.J. Chen, Y.J. Huang, and G.J. Wen, AIP Adv. 3, 102118 (2013).CrossRefGoogle Scholar
  24. 24.
    D.V. Isakov, Q. Lei, F. Castles, C.J. Stevens, C.R.M. Grovenor, and P.S. Grant, Mater. Design 93, 423 (2016).CrossRefGoogle Scholar
  25. 25.
    F. Castles, D. Isakov, A. Lui, Q. Lei, C.E.J. Dancer, Y. Wang, J.M. Janurudin, S.C. Speller, C.R.M. Grovenor, and P.S. Grant, Sci. Rep. 6, 22714 (2016).CrossRefGoogle Scholar
  26. 26.
    Q. Wang, Y. Wang, X.Z. Tang, X.Z. Huang, Y.J. Xiong, and F. Zhang, J. Adv. Dielectr. 8, 1850021 (2018).CrossRefGoogle Scholar
  27. 27.
    R.E. Jones, F. Simonetti, and I.P. Bradley, J. Nondestruct. Eval. 31, 117 (2012).CrossRefGoogle Scholar
  28. 28.
    D.R. Smith, D.C. Vier, Th Koschny, and C.M. Soukoulis, Phys. Rev. E 71, 036617 (2005).CrossRefGoogle Scholar
  29. 29.
    Z. Ma, C.T. Cao, Q.F. Liu, and J.B. Wang, Chin. Phys. Lett. 29, 38401 (2012).CrossRefGoogle Scholar
  30. 30.
    Q. Wang, X.Z. Tang, D. Zhou, Z.J. Du, and X.Z. Huang, IEEE Antennas Wirel. Propag. Lett. 16, 3200 (2017).CrossRefGoogle Scholar
  31. 31.
    W.R. Holland and D.G. Hall, Phys. Rev. Lett. 52, 1041 (1984).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  • Qiang Wang
    • 1
  • Fen Zhang
    • 2
  • Yijun Xiong
    • 1
  • Yan Wang
    • 1
  • Xiu-Zhi Tang
    • 1
  • Chao Jiang
    • 1
  • Isaac Abrahams
    • 3
  • Xiaozhong Huang
    • 1
  1. 1.Hunan Key Laboratory of Advanced Fibers and Composites, School of Aeronautics and AstronauticsCentral South UniversityChangshaChina
  2. 2.School of Physics and ElectronicsCentral South UniversityChangshaChina
  3. 3.School of Biological and Chemical SciencesQueen Mary University of LondonLondonUK

Personalised recommendations