Advertisement

Journal of Electronic Materials

, Volume 48, Issue 2, pp 867–872 | Cite as

Temperature Stable Microwave Dielectric Ceramic CoTiNb2O8-Zn1.01Nb2O6 with Ultra-Low Dielectric Loss

  • Yun ZhangEmail author
  • Shihua Ding
  • Lu You
  • Yingchun Zhang
Article
  • 17 Downloads

Abstract

(1 − x)CoTiNb2O8-xZn1.01Nb2O6 ceramics were prepared via a conventional solid-state reaction route to obtain near-zero τf. The effects of Zn1.01Nb2O6 content on the phase, microstructure and microwave dielectric properties of CoTiNb2O8 ceramics were investigated. X-ray diffraction (XRD) revealed a mixture of tetragonal rutile and orthorhombic columbite phases co-existed over the entire range. Both the sintering behavior and quality factor (Q × f) of matrix ceramics were enhanced effectively by the addition of Zn1.01Nb2O6. On the other hand, the relative permittivity (εr) decreased linearly from 41.6 to 24.8. The temperature coefficient of resonant frequency (τf) could be controlled by adjusting the x value. When \( x = 0.8 \), the composite ceramic sintered at 1200°C possessed optimum microwave dielectric properties with \( \varepsilon_{r} \sim 27.8 \), \( Q \times f \sim 94{,}700\;{\hbox{GHz}} \), and \( \tau_{f} \sim 0 \) ppm/°C.

Keywords

Microwave dielectric properties ceramics CoTiNb2O8 Zn1.01Nb2O6 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

This work was supported by the Key Scientific Research Fund of Xihua University (Grant No. Z17106) and Xihua University Talents Supporting Program (Grant No. 21030028).

References

  1. 1.
    S.Z. Hao, D. Zhou, W.B. Li, and L.X. Pang, J. Electron. Mater. 46, 6241 (2017).CrossRefGoogle Scholar
  2. 2.
    Y.C. Liou and Y.C. Wu, J. Electron. Mater. 46, 2387 (2017).CrossRefGoogle Scholar
  3. 3.
    W.X. Wen, C.C. Li, Y.H. Sun, Y. Tang, and L. Fang, J. Electron. Mater. 47, 1003 (2018).CrossRefGoogle Scholar
  4. 4.
    A. Templeton, X.R. Wang, S.J. Penn, S.J. Webb, L.F. Cohen, and N.M. Alford, J. Am. Ceram. Soc. 83, 95 (2000).CrossRefGoogle Scholar
  5. 5.
    L.X. Pang, H. Wang, D. Zhou, and X. Yao, J. Electroceram. 23, 13 (2009).CrossRefGoogle Scholar
  6. 6.
    L.X. Pang, H. Wang, D. Zhou, and X. Yao, J. Am. Ceram. Soc. 91, 2947 (2008).CrossRefGoogle Scholar
  7. 7.
    E.S. Kim and D.H. Kang, Ceram. Int. 34, 883 (2008).CrossRefGoogle Scholar
  8. 8.
    D. Zhou, D. Guo, W.B. Li, L.X. Pang, X. Yao, D.W. Wang, and I.M. Reaney, J. Mater. Chem. C 4, 5357 (2016).CrossRefGoogle Scholar
  9. 9.
    D. Zhou, L.X. Pang, D.W. Wang, C. Li, B.B. Jin, and I.M. Reaney, J. Mater. Chem. C 5, 10094 (2017).CrossRefGoogle Scholar
  10. 10.
    A. Baumgarte and R. Blachnik, J. Alloys Compd. 215, 117 (1994).CrossRefGoogle Scholar
  11. 11.
    C.F. Tseng, J. Eur. Ceram. Soc. 34, 3641 (2014).CrossRefGoogle Scholar
  12. 12.
    Y. Zhang, Y.C. Zhang, and M.Q. Xiang, Ceram. Int. 42, 3542 (2016).CrossRefGoogle Scholar
  13. 13.
    R.C. Pullar, J. Am. Ceram. Soc. 92, 563 (2009).CrossRefGoogle Scholar
  14. 14.
    Y.C. Liou and Y.L. Sung, Ceram. Int. 34, 371 (2008).CrossRefGoogle Scholar
  15. 15.
    H.J. Lee, I.T. Kim, and K.S. Hong, Jpn. J. Appl. Phys. 36, L1318 (1997).CrossRefGoogle Scholar
  16. 16.
    A. Belous, O. Ovchar, B. Jancar, and J. Bezjak, J. Eur. Ceram. Soc. 27, 2933 (2007).CrossRefGoogle Scholar
  17. 17.
    Y. Zhang, Y.C. Zhang, and M.Q. Xiang, Mater. Lett. 178, 175 (2016).CrossRefGoogle Scholar
  18. 18.
    J. Zhang and Z.X. Yue, Ceram. Int. 43, S317 (2017).CrossRefGoogle Scholar
  19. 19.
    B.W. Hakki and P.D. Coleman, IEEE Trans. Microw. Theory Tech. 8, 402 (1960).CrossRefGoogle Scholar
  20. 20.
    W.E. Courtney, IEEE Trans. Microw. Theory Tech. 18, 476 (1970).CrossRefGoogle Scholar
  21. 21.
    Y. Kobayashiy and M. Katoh, IEEE Trans. Microw. Theory Tech. 33, 586 (1985).CrossRefGoogle Scholar
  22. 22.
    P. Sarah and S. Suryanarayana, Bull. Mater. Sci. 26, 745 (2003).CrossRefGoogle Scholar
  23. 23.
    Y.C. Chen and R.Y. Syu, J. Mater. Sci.: Mater. Electron. 27, 6979 (2016).Google Scholar
  24. 24.
    W.S. Kim, T.H. Kim, and E.S. Kim, J. Jpn. Appl. Phys. 37, 5367 (1998).CrossRefGoogle Scholar
  25. 25.
    Y.C. Chen and Y.W. Zeng, J. Alloys Compd. 481, 369 (2009).CrossRefGoogle Scholar
  26. 26.
    X.P. Lu, Y. Zheng, Z.W. Dong, and Q. Huang, Mater. Lett. 131, 1 (2014).CrossRefGoogle Scholar
  27. 27.
    J.W. Choi, S. Kucheiko, S.J. Yoon, J. Jai, and K.H. Yoon, J. Am. Ceram. Soc. 84, 2570 (2001).CrossRefGoogle Scholar
  28. 28.
    L.A. Khalam, S. Thomas, and M.T. Sebastian, J. Am. Ceram. Soc. 90, 2476 (2007).CrossRefGoogle Scholar
  29. 29.
    K.P. Surendran and M.T. Sebastian, J. Mater. Res. 20, 2919 (2005).CrossRefGoogle Scholar
  30. 30.
    C.F. Tseng and C.L. Huang, Mater. Res. Bull. 42, 9 (2006).CrossRefGoogle Scholar
  31. 31.
    C.F. Yang, C.C. Chan, C.M. Cheng, and Y.C. Chen, J. Eur. Ceram. Soc. 25, 2849 (2005).CrossRefGoogle Scholar
  32. 32.
    J.W. Choi, J.Y. Ha, S.J. Yoon, H.J. Kim, and K.H. Yoon, J. Eur. Ceram. Soc. 23, 2507 (2003).CrossRefGoogle Scholar
  33. 33.
    C.H. Su, Y.D. Ho, and C.L. Huang, J. Alloys Compd. 607, 67 (2014).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  • Yun Zhang
    • 1
    Email author
  • Shihua Ding
    • 1
  • Lu You
    • 1
  • Yingchun Zhang
    • 2
  1. 1.School of Materials Science and EngineeringXihua UniversityChengduPeople’s Republic of China
  2. 2.School of Materials Science and EngineeringUniversity of Science and Technology BeijingBeijingPeople’s Republic of China

Personalised recommendations