Advertisement

Journal of Electronic Materials

, Volume 48, Issue 2, pp 853–860 | Cite as

Impact of In Situ Annealing Time on CdTe Polycrystalline Film and Device Performance

  • Huagui Lai
  • Kang Li
  • Lili WuEmail author
  • Hang Xu
  • Chuang Li
  • Chunxiu Li
  • Jingquan Zhang
  • Xia Hao
  • Lianghuan Feng
Article
  • 29 Downloads

Abstract

We studied the impact of in situ post-growth annealing process on cadmium telluride (CdTe) polycrystalline thin film in this work. Samples of different annealing times have been characterized by x-ray diffraction (XRD) and a scanning electron microscope (SEM). The optoelectronic properties of CdTe film were deeply studied with light I–V testing, external quantum efficiency (EQE) and photoluminescence (PL)/time-resolved photoluminescence (TRPL) measurements. It is found that the in situ post-growth annealing treatment has a great effect on cadmium sulfide (CdS)/CdTe intermixing as well as interface pinholes. Elementary correlations between annealing time, film and junction morphology, carrier lifetime and device performance were investigated, and the annealing time turns out to be crucial to CdTe device performance. Solar cells with CdTe polycrystalline thin film annealed in situ at 550°C/550°C for 10 min show the best performance. With the help of precisely controlled annealing time, better CdTe film microstructure and morphology can be realized after in situ post-growth annealing.

Keywords

CdTe solar cell in situ annealing TRPL 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

This work was supported by the National High Technology Research and Development Program of China (Grant No. 2015AA050610) and the National Natural Science Foundation of China (Grant No. 61704115).

References

  1. 1.
    M.A. Green, Y. Hishikawa, W. Warta, E.D. Dunlop, D.H. Levi, J. Hohl-Ebinger, and A.W. Ho-Baillie, Prog. Photovolt. Res. Appl. 25, 668 (2017).CrossRefGoogle Scholar
  2. 2.
    V.P. Singh, H. Brafman, J. Makwana, and J.C. Mcclure, Solar Cells 31, 23 (1991).CrossRefGoogle Scholar
  3. 3.
    S.A. Ringel, A.W. Smith, M.H. Macdougal, and A. Rohatgi, J. Appl. Phys. 70, 881 (1991).CrossRefGoogle Scholar
  4. 4.
    B.E. McCandless, L.V. Moulton, and R.W. Birkmire, Prog. Photovolt. 5, 249 (1997).CrossRefGoogle Scholar
  5. 5.
    C. Ferekides, J. Britt, Y. Ma, and L. Killian, in Presented at the Conference Record of the Twenty Third IEEE Photovoltaic Specialists Conference (1993) (unpublished).Google Scholar
  6. 6.
    C.S. Ferekides, D. Marinskiy, V. Viswanathan, B. Tetali, V. Palekis, P. Selvaraj, and D.L. Morel, Thin Solid Films 361, 520 (2000).CrossRefGoogle Scholar
  7. 7.
    B. Li, L. Feng, J. Zheng, W. Cai, Y. Cai, J. Zhang, W. Li, L. Wu, and Z. Lei, in Presented at the 2006 IEEE 4th World Conference on Photovoltaic Energy Conference (2006) (unpublished).Google Scholar
  8. 8.
    A. Romeo, G. Khrypunov, S. Galassini, H. Zogg, A. Tiwari, N. Romeo, A. Bosio, and S. Mazzamuto, in Presented at the 22nd European Photovoltaics Solar Energy Conference (2007) (unpublished).Google Scholar
  9. 9.
    A.A. Al-mebir, P. Harrison, A. Kadhim, G. Zeng, and J. Wu, Adv. Condens. Matter. Phys. 2016, 1 (2016).CrossRefGoogle Scholar
  10. 10.
    W.K. Metzger, D. Albin, D. Levi, P. Sheldon, X. Li, B.M. Keyes, and R.K. Ahrenkiel, J. Appl. Phys. 94, 3549 (2003).CrossRefGoogle Scholar
  11. 11.
    V. Buschmann, H. Hempel, A. Knigge, C. Kraft, M. Roczen, M. Weyers, T. Siebert, and F. Koberling, J. Appl. Spectrosc. 80, 449 (2013).CrossRefGoogle Scholar
  12. 12.
    J. Gao, W. Jie, Y. Yuan, T. Wang, G. Zha, and J. Tong, J. Vac. Sci. Technol. A 29, 051507 (2011).CrossRefGoogle Scholar
  13. 13.
    C.A. Schneider, W.S. Rasband, and K.W. Eliceiri, Nat. Methods 9, 671 (2012).CrossRefGoogle Scholar
  14. 14.
    G.C. MLAMorris and S.K. Das, in Photovoltaic Specialists Conference, Conference Record of the Twenty Third IEEE. IEEE (2002).Google Scholar
  15. 15.
    A. Morales-Acevedo, Sol. Energy Mater. Sol. Cells 90, 678 (2006).CrossRefGoogle Scholar
  16. 16.
    J.R. Sites, J.E. Granata, and J.F. Hiltner, Sol. Energy Mater. Sol. Cells 55, 43 (1998).CrossRefGoogle Scholar
  17. 17.
    N. Romeo, A. Bosio, R. Tedeschi, A. Romeo, and V. Canevari, Sol. Energy Mater. Sol. Cells 58, 209 (1999).CrossRefGoogle Scholar
  18. 18.
    A. Romeo, D.L. Bätzner, H. Zogg, C. Vignali, and A.N. Tiwari, Sol. Energy Mater. Sol. Cells 67, 311 (2001).CrossRefGoogle Scholar
  19. 19.
    A. Gupta, V. Parikh, and A.D. Compaan, Sol. Energy Mater. Sol. Cells 90, 2263 (2006).CrossRefGoogle Scholar
  20. 20.
    T.H. Myers, J.F. Schetzina, S.T. Edwards, and A.F. Schreiner, J. Appl. Phys. 54, 4232 (1983).CrossRefGoogle Scholar
  21. 21.
    D.P. Halliday, M.D.G. Potter, J.T. Mullins, and A.W. Brinkman, J. Cryst. Growth 220, 30 (2000).CrossRefGoogle Scholar
  22. 22.
    S.-H. Wei, S.B. Zhang, and A. Zunger, J. Appl. Phys. 87, 1304 (2000).CrossRefGoogle Scholar
  23. 23.
    D. Kuciauskas, P. Dippo, Z. Zhao, L. Cheng, A. Kanevce, W.K. Metzger, and M. Gloeckler, IEEE J. Photovolt. 6, 313 (2016).CrossRefGoogle Scholar
  24. 24.
    A. Kanevce, D. Kuciauskas, T.A. Gessert, D.H. Levi, D.S. Albin, and IEEE, in 2012 38th IEEE Photovoltaic Specialists Conference (Pvsc), pp. 848–853 (2012).Google Scholar
  25. 25.
    A. Kanevce, D.H. Levi, and D. Kuciauskas, Prog. Photovolt. Res. Appl. 22, 1138 (2014).CrossRefGoogle Scholar
  26. 26.
    I.L. Repins, B. Egaas, L.M. Mansfield, M.A. Contreras, C.P. Muzzillo, C. Beall, S. Glynn, J. Carapella, and D. Kuciauskas, Rev. Sci. Instrum. 86, 013907 (2015).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  1. 1.College of Materials Science and EngineeringSichuan UniversityChengduChina
  2. 2.Institute of New Energy and Low-Carbon TechnologySichuan UniversityChengduChina

Personalised recommendations